5 research outputs found

    MOESM3 of Microbial communities and inflammatory response in the endometrium differ between normal and metritic dairy cows at 5–10 days post-partum

    No full text
    Additional file 3. Rarefaction curves of 16S-rDNA pyrosequencing endometrial samples from healthy, metritic and septic metritic cows. Rarefaction curves of the number of OTUs are presented as a function of read number. H - healthy cows, endometrial swab samples; M - metritic cows, endometrial swab samples; BM - metritic cows, full-thickness uterine biopsy samples; BS - septic metritis cow, full-thickness uterine biopsy sample

    MOESM5 of Microbial communities and inflammatory response in the endometrium differ between normal and metritic dairy cows at 5–10 days post-partum

    No full text
    Additional file 5. Most abundant genera of the phyla Bacteroidetes, Firmicutes and Fusobacteria in healthy and metritic cows with similar community composition. Samples were collected by endometrial swabs at 5–10 days post-partum and used for 16S-rDNA pyrosequencing analysis. For each phylum, the ten most abundant OTUs were included in descending order. Some genera appear twice or more as distinct OTUs. *The healthy group is composed of four cows with a similar bacterial community composition to the average metritic cow community composition sorted by phylum

    MOESM4 of Microbial communities and inflammatory response in the endometrium differ between normal and metritic dairy cows at 5–10 days post-partum

    No full text
    Additional file 4. Endometrial bacterial community composition by phylum in healthy and metritic cows. Samples were collected by endometrial swabs at 5–10 days post-partum and used for 16S-rDNA pyrosequencing analysis. Results are presented as mean abundance ± SEM. P value is specified where a statistically significant difference was found between the groups; NS: not significant

    MOESM2 of Microbial communities and inflammatory response in the endometrium differ between normal and metritic dairy cows at 5–10 days post-partum

    No full text
    Additional file 2. Kaplan–Meyer survival analysis of time interval from parturition to pregnancy in healthy and metritic cows. Kaplan-Meier Survival analysis (Log Rank, Mantel-Cox) test was used to analyze differences in interval from parturition to conception. Time to pregnancy was significantly shorter in healthy cows (green) as compared to cows with metritis (red), P = 0.004

    MOESM1 of Microbial communities and inflammatory response in the endometrium differ between normal and metritic dairy cows at 5–10 days post-partum

    No full text
    Additional file 1. Reproductive performance of healthy and metritic cows. Reproductive management was based on artificial insemination (AI) with thawed-frozen semen from proven sires. AI was performed by highly trained technicians employed by Sion LTD., Israel’s leading company for dairy cow Artificial Insemination Service. Cows were bred on spontaneous estrus observed or detected by computerized pedometry system. Estrus was confirmed by trans-rectal palpation of the reproductive tract at the time of AI. For pregnancy diagnosis, trans-rectal palpation of the uterus was performed at 40–50 days post-insemination. Reproductive performance parameters included the following: number of AI to conception, open days (days from parturition to conception), waste days (days from first AI to AI leading to conception; i.e., equals 0 if cow is pregnant from first AI), and pregnancy rate at 180 DIM. Data were analyzed by Wilcoxon rank sum test, or a Pearson’s Chi square test analysis (to compare pregnancy rate at 180 DIM). Values presented in the table are mean ± SEM for each group, or percentages (%)
    corecore