2 research outputs found

    Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serum-free microcarrier process

    Get PDF
    Human mesenchymal stem cell (hMSC) therapies are currently progressing through clinical development, driving the need for consistent, and cost effective manufacturing processes to meet the lot-sizes required for commercial production. The use of animal-derived serum is common in hMSC culture but has many drawbacks such as limited supply, lot-to-lot variability, increased regulatory burden, possibility of pathogen transmission, and reduced scope for process optimization. These constraints may impact the development of a consistent large-scale process and therefore must be addressed. The aim of this work was therefore to run a pilot study in the systematic development of serum-free hMSC manufacturing process. Human bone-marrow derived hMSCs were expanded on fibronectin-coated, non-porous plastic microcarriers in 100mL stirred spinner flasks at a density of 3×105cells.mL-1 in serum-free medium. The hMSCs were successfully harvested by our recently-developed technique using animal-free enzymatic cell detachment accompanied by agitation followed by filtration to separate the hMSCs from microcarriers, with a post-harvest viability of 99.63±0.03%. The hMSCs were found to be in accordance with the ISCT characterization criteria and maintained hMSC outgrowth and colony-forming potential. The hMSCs were held in suspension post-harvest to simulate a typical pooling time for a scaled expansion process and cryopreserved in a serum-free vehicle solution using a controlled-rate freezing process. Post-thaw viability was 75.8±1.4% with a similar 3h attachment efficiency also observed, indicating successful hMSC recovery, and attachment. This approach therefore demonstrates that once an hMSC line and appropriate medium have been selected for production, multiple unit operations can be integrated to generate an animal component-free hMSC production process from expansion through to cryopreservation

    Agitation conditions for the culture and detachment of hMSCs from microcarriers in multiple bioreactor platforms

    Get PDF
    In our recent work in different bioreactors up to 2.5L in scale, we have successfully cultured hMSCs using the minimum agitator speed required for complete microcarrier suspension, N JS. In addition, we also reported a scaleable protocol for the detachment from microcarriers in spinner flasks of hMSCs from two donors. The essence of the protocol is the use of a short period of intense agitation in the presence of enzymes such that the cells are detached; but once detachment is achieved, the cells are smaller than the Kolmogorov scale of turbulence and hence not damaged. Here, the same approach has been effective for culture at N JS and detachment in-situ in 15mL ambrâ„¢ bioreactors, 100mL spinner flasks and 250mL Dasgip bioreactors. In these experiments, cells from four different donors were used along with two types of microcarrier with and without surface coatings (two types), four different enzymes and three different growth media (with and without serum), a total of 22 different combinations. In all cases after detachment, the cells were shown to retain their desired quality attributes and were able to proliferate. This agitation strategy with respect to culture and harvest therefore offers a sound basis for a wide range of scales of operation
    corecore