645 research outputs found

    Spectroscopic properties and radiation damage investigation of a diamond based Schottky diode for ion-beam therapy microdosimetry

    Get PDF
    In this work, a detailed analysis of the properties of a novel microdosimeter based on a synthetic single crystal diamond is reported. Focused ion microbeams were used to investigate the device spectropscopic properties as well as the induced radiation damageeffects. A diamond based Schottky diode was fabricated by chemical vapor deposition with a very thin detecting region, about 400 nm thick (approximately 1.4 μm water equivalent thickness), corresponding to the typical size in microdosimetric measurements. A 200 × 200 μm2 square metallic contact was patterned on the diamond surface by standard photolithography to define the sensitive area. Experimental measurements were carried out at the Ruder Boškovic′ Institute microbeam facility using 4 MeV carbon and 5 MeV silicon ions. Ion beam induced charge maps were employed to characterize the microdosimeter response in terms of its charge collection properties. A stable response with no evidence of polarization or memory effects was observed up to the maximum investigated ion beam flux of about 1.7 × 109 ions·cm−2·s−1. A homogeneity of the response about 6% was found over the sensitive region with a well-defined confinement of the response within the active area. Tests of the radiation damageeffect were performed by selectively irradiating small areas of the device with different ion fluences, up to about 1012 ions/cm2. An exponential decrease of the charge collection efficiency was observed with a characteristic decay constant of about 4.8 MGy and 1 MGy for C and Si ions, respectively. The experimental data were analyzed by means of GEANT4 Monte Carlo simulations. A direct correlation between the diamond damaging effect and the Non Ionizing Energy Loss (NIEL) fraction was found. In particular, an exponential decay of the charge collection efficiency with an exponential decay as a function of NIEL is observed, with a characteristic constant of about 9.3 kGy-NIEL for both carbon and silicon ions

    Gate-source distance scaling effects in H-terminated diamond MESFETs

    Get PDF
    In this paper, an analysis of gate-source and gate-drain scaling effects in MESFETs fabricated on hydrogen-terminated single-crystal diamond films is reported. The experimental results show that a decrease in gate-source spacing can improve the device performance by increasing the device output current density and its transconductance. On the contrary, the gate--drain distance produces less pronounced effects on device performance. Breakdown voltage, knee voltage, and threshold voltage variations due to changes in gate-source and drain-source distances have also been investigated. The obtained results can be used as a design guideline for the layout optimization of H-terminated diamond-based MESFETs

    Measurement and modelling of anomalous polarity pulses in a multi-electrode diamond detector

    Full text link
    In multi-electrode detectors, the motion of excess carriers generated by ionizing radiation induces charge pulses at the electrodes, whose intensities and polarities depend on the geometrical, electrostatic and carriers transport properties of the device. The resulting charge sharing effects may lead to bipolar currents, pulse height defects and anomalous polarity signals affecting the response of the device to ionizing radiation. This latter effect has recently attracted attention in commonly used detector materials, but different interpretations have been suggested, depending on the material, the geometry of the device and the nature of the ionizing radiation. In this letter, we report on the investigation in the formation of anomalous polarity pulses in a multi-electrode diamond detector with buried graphitic electrodes. In particular, we propose a purely electrostatic model based on the Shockley-Ramo-Gunn theory, providing a satisfactory description of anomalous pulses observed in charge collection efficiency maps measured by means of Ion Beam Induced Charge (IBIC) microscopy, and suitable for a general application in multi-electrode devices and detectors.Comment: 8 pages, 4 figure

    Spectrometric performances of monocrystalline artificial diamond detectors operated at high temperature

    Get PDF

    Diamond detectors for dose and instantaneous dose‐rate measurements for ultra‐high dose‐rate scanned helium ion beams

    Get PDF
    Background The possible emergence of the FLASH effect—the sparing of normal tissue while maintaining tumor control—after irradiations at dose-rates exceeding several tens of Gy per second, has recently spurred a surge of studies attempting to characterize and rationalize the phenomenon. Investigating and reporting the dose and instantaneous dose-rate of ultra-high dose-rate (UHDR) particle radiotherapy beams is crucial for understanding and assessing the FLASH effect, towards pre-clinical application and quality assurance programs. Purpose The purpose of the present work is to investigate a novel diamond-based detector system for dose and instantaneous dose-rate measurements in UHDR particle beams. Methods Two types of diamond detectors, a microDiamond (PTW 60019) and a diamond detector prototype specifically designed for operation in UHDR beams (flashDiamond), and two different readout electronic chains, were investigated for absorbed dose and instantaneous dose-rate measurements. The detectors were irradiated with a helium beam of 145.7 MeV/u under conventional and UHDR delivery. Dose-rate delivery records by the monitoring ionization chamber and diamond detectors were studied for single spot irradiations. Dose linearity at 5 cm depth and in-depth dose response from 2 to 16 cm were investigated for both measurement chains and both detectors in a water tank. Measurements with cylindrical and plane-parallel ionization chambers as well as Monte-Carlo simulations were performed for comparisons. Results Diamond detectors allowed for recording the temporal structure of the beam, in good agreement with the one obtained by the monitoring ionization chamber. A better time resolution of the order of few μs was observed as compared to the approximately 50 μs of the monitoring ionization chamber. Both diamonds detectors show an excellent linearity response in both delivery modalities. Dose values derived by integrating the measured instantaneous dose-rates are in very good agreement with the ones obtained by the standard electrometer readings. Bragg peak curves confirmed the consistency of the charge measurements by the two systems. Conclusions The proposed novel dosimetric system allows for a detailed investigation of the temporal evolution of UHDR beams. As a result, reliable and accurate determinations of dose and instantaneous dose-rate are possible, both required for a comprehensive characterization of UHDR beams and relevant for FLASH effect assessment in clinical treatments

    Diamond detectors for dose and instantaneous dose-rate measurements for ultra-high dose-rate scanned helium ion beams

    Get PDF
    Background: The possible emergence of the FLASH effect—the sparing of normal tissue while maintaining tumor control—after irradiations at dose-rates exceeding several tens of Gy per second, has recently spurred a surge of studies attempting to characterize and rationalize the phenomenon. Investigating and reporting the dose and instantaneous dose-rate of ultra-high dose-rate (UHDR) particle radiotherapy beams is crucial for understanding and assessing the FLASH effect, towards pre-clinical application and quality assurance programs. Purpose: The purpose of the present work is to investigate a novel diamond-based detector system for dose and instantaneous dose-rate measurements in UHDR particle beams. Methods: Two types of diamond detectors, a microDiamond (PTW 60019) and a diamond detector prototype specifically designed for operation in UHDR beams (flashDiamond), and two different readout electronic chains, were investigated for absorbed dose and instantaneous dose-rate measurements. The detectors were irradiated with a helium beam of 145.7 MeV/u under conventional and UHDR delivery. Dose-rate delivery records by the monitoring ionization chamber and diamond detectors were studied for single spot irradiations. Dose linearity at 5 cm depth and in-depth dose response from 2 to 16 cm were investigated for both measurement chains and both detectors in a water tank. Measurements with cylindrical and plane-parallel ionization chambers as well as Monte-Carlo simulations were performed for comparisons. Results: Diamond detectors allowed for recording the temporal structure of the beam, in good agreement with the one obtained by the monitoring ionization chamber. A better time resolution of the order of few μs was observed as compared to the approximately 50 μs of the monitoring ionization chamber. Both diamonds detectors show an excellent linearity response in both delivery modalities. Dose values derived by integrating the measured instantaneous dose-rates are in very good agreement with the ones obtained by the standard electrometer readings. Bragg peak curves confirmed the consistency of the charge measurements by the two systems. Conclusions: The proposed novel dosimetric system allows for a detailed investigation of the temporal evolution of UHDR beams. As a result, reliable and accurate determinations of dose and instantaneous dose-rate are possible, both required for a comprehensive characterization of UHDR beams and relevant for FLASH effect assessment in clinical treatments

    A novel microdosimeter based upon artificial single crystal diamond

    Get PDF

    Dedicated multichannel readout ASIC coupled with single crystal diamond for dosimeter application

    Get PDF
    This paper reports on the tests of a low-noise, multi-channel readout integrated circuit used as a readout electronic front-end for a diamond multi-pixel dosimeter. The system is developed for dose distribution measurement in radiotherapy applications. The first 10-channel prototype chip was designed and fabricated in a 0.18 um CMOS process. Every channel includes a charge integrator with a 10 pF capacitor and a double slope A/D converter. The diamond multi-pixel detector, based on CVD synthetic single crystal diamond Schottky diodes, is made by a 3 × 3 sensor matrix. The overall device has been tested under irradiation with 6 MeV radio therapeutic photon beams at the Policlinico ``Tor Vergata'' (PTV) hospital. Measurements show a 20 fA RMS leakage current from the front-end input stage and a negligible dark current from the diamond detector, a stable temporal response and a good linear behaviour as a function of both dose and dose rate. These characteristics were common to each tested channel

    On the measurement uncertainty of microdosimetric quantities using diamond and silicon microdosimeters in carbon-ion beams

    Get PDF
    Purpose: The purpose of this paper is to compare the response of two different types of solid-state microdosimeters, that is, silicon and diamond, and their uncertainties. A study of the conversion of silicon microdosimetric spectra to the diamond equivalent for microdosimeters with different geometry of the sensitive volumes is performed, including the use of different stopping power databases. Method: Diamond and silicon microdosimeters were irradiated under the same conditions, aligned at the same depth in a carbon-ion beam at the MedAustron ion therapy center. In order to estimate the microdosimetric quantities, the readout electronic linearity was investigated with three different methods, that is, the first being a single linear regression, the second consisting of a double linear regression with a channel transition and last a multiple linear regression by splitting the data into odd and even groups. The uncertainty related to each of these methods was estimated as well. The edge calibration was performed using the intercept with the horizontal axis of the tangent through the inflection point of the Fermi function approximation multi-channel analyzer spectrum. It was assumed that this point corresponds to the maximum energy difference of particle traversing the sensitive volume (SV) for which the residual range difference in the continuous slowing down approximation is equal to the thickness of the SV of the microdosimeter. Four material conversion methods were explored, the edge method, the density method, the maximum-deposition energy method and the bin-by-bin transformation method. The uncertainties of the microdosimetric quantities resulting from the linearization, the edge calibration and the detectors thickness were also estimated. Results: It was found that the double linear regression had the lowest uncertainty for both microdosimeters. The propagated standard (k = 1) uncertainties on the frequency-mean lineal energy y¯FyˉF{\bar{y}}_{\rm{F}} and the dose-mean lineal energy y¯DyˉD{\bar{y}}_{\rm{D}} values from the marker point, in the spectra, in the plateau were 0.1% and 0.2%, respectively, for the diamond microdosimeter, whilst for the silicon microdosimeter data converted to diamond, the uncertainty was estimated to be 0.1%. In the range corresponding to the 90% of the amplitude of the Bragg Peak at the distal part of the Bragg curve (R90 ) the uncertainty was found to be 0.1%. The uncertainty propagation from the stopping power tables was estimated to be between 5% and 7% depending on the method. The uncertainty on the y¯FyˉF{\bar{y}}_{\rm{F}} and y¯DyˉD{\bar{y}}_{\rm{D}} coming from the thickness of the detectors varied between 0.3% and 0.5%. Conclusion: This article demonstrate that the linearity of the readout electronics affects the microdosimetric spectra with a difference in y¯FyˉF{\bar{y}}_{\rm{F}} values between the different linearization methods of up to 17.5%. The combined uncertainty was dominated by the uncertainty of stopping power on the edge
    corecore