3 research outputs found

    Investigating and monitoring anthelmintic resistance: from molecular markers to High Throughput diagnosis tools

    No full text
    International audienceThe control of parasitic nematode infections in humans, livestock and companion animals is critically dependent on anthelmintic treatment. However, the indiscriminate use of anthelmintic drugs has inevitably led to the selection of resistant parasites. In this presentation, identification and functional validation of molecular markers associated with resistance will be presented, opening a discussion about advantages and limitations of the use of C. elegans as model for parasitic species. In addition, as diagnosis tools are of particular interest to monitor resistance spreading and refine strategies for the control resistant parasites, recent advances in automated phenotypic assays performed on larval stages of the parasite will be discusse

    Nemacol is a small molecule inhibitor of C. elegans vesicular acetylcholine transporter with anthelmintic potential

    No full text
    Harrington et al report their discovery of Nemacol, which is a small molecule inhibitor of the vesicular acetylcholine transporter (VAChT). VAChT loads synaptic vesicles with acetylcholine and is a key point of vulnerability in animals. Harrington et al show that Nemacol has nematode selectivity and potential utility against nematode parasites

    Remedial Treatment of Corroded Iron Objects by Environmental Aeromonas Isolates

    No full text
    Using bacteria to transform reactive corrosion products into stable compounds represents an alternative to traditional methods employed in iron conservation. Two environmental Aeromonas strains (CA23 and CU5) were used to transform ferric iron corrosion products (goethite and lepidocrocite) into stable ferrous ironbearing minerals (vivianite and siderite). A genomic and transcriptomic approach was used to analyze the metabolic traits of these strains and to evaluate their pathogenic potential. Although genes involved in solid-phase iron reduction were identified, key genes present in other environmental iron-reducing species are missing from the genome of CU5. Several pathogenicity factors were identified in the genomes of both strains, but none of these was expressed under iron reduction conditions. Additional in vivo tests showed hemolytic and cytotoxic activities for strain CA23 but not for strain CU5. Both strains were easily inactivated using ethanol and heat. Nonetheless, given a lesser potential for a pathogenic lifestyle, CU5 is the most promising candidate for the development of a bio-based iron conservation method stabilizing iron corrosion. Based on all the results, a prototype treatment was established using archaeological items. On those, the conversion of reactive corrosion products and the formation of a homogenous layer of biogenic iron minerals were achieved. This study shows how naturally occurring microorganisms and their metabolic capabilities can be used to develop bio-inspired solutions to the problem of metal corrosion
    corecore