19 research outputs found
Longitudinal analysis of diffusion-weighted MRI with a ball-and-sticks model
Purpose: To increase the sensitivity in longitudinal analysis of DW-MRI data with the ball-and-sticks model.ImPhys/Quantitative Imagin
HASE: Framework for efficient high-dimensional association analyses
High-throughput technology can now provide rich information on a person's biological makeup and environmental surroundings. Important discoveries have been made by relating these data to various health outcomes in fields such as genomics, proteomics, and medical imaging. However, cross-investigations between several high-throughput technologies remain impractical due to demanding computational requirements (hundreds of years of computing resources) and unsuitability for collaborative settings (terabytes of data to share). Here we introduce the HASE framework that overcomes both of these issues. Our approach dramatically reduces computational time from years to only hours and also requires several gigabytes to be exchanged between collaborators. We implemented a novel meta-analytical method that yields identical power as pooled analyses without the need of sharing individual participant data. The efficiency of the framework is illustrated by associating 9 million genetic variants with 1.5 million brain imaging voxels in three cohorts (total N = 4,034) followed by meta-analysis, on a standard computational infrastructure. These experiments indicate that HASE facilitates high-dimensional association studies enabling large multicenter association studies for future discoveries.ImPhys/Quantitative Imagin
Legislative Documents
Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents
Longitudinal diffusion MRI analysis using Segis-Net: A single-step deep-learning framework for simultaneous segmentation and registration
This work presents a single-step deep-learning framework for longitudinal image analysis, coined Segis-Net. To optimally exploit information available in longitudinal data, this method concurrently learns a multi-class segmentation and nonlinear registration. Segmentation and registration are modeled using a convolutional neural network and optimized simultaneously for their mutual benefit. An objective function that optimizes spatial correspondence for the segmented structures across time-points is proposed. We applied Segis-Net to the analysis of white matter tracts from N=8045 longitudinal brain MRI datasets of 3249 elderly individuals. Segis-Net approach showed a significant increase in registration accuracy, spatio-temporal segmentation consistency, and reproducibility compared with two multistage pipelines. This also led to a significant reduction in the sample-size that would be required to achieve the same statistical power in analyzing tract-specific measures. Thus, we expect that Segis-Net can serve as a new reliable tool to support longitudinal imaging studies to investigate macro- and microstructural brain changes over time.ImPhys/Medical ImagingImPhys/Computational ImagingImPhys/Imaging Physic
Progression along data-driven disease timelines is predictive of Alzheimer's disease in a population-based cohort
Data-driven disease progression models have provided important insight into the timeline of brain changes in AD phenotypes. However, their utility in predicting the progression of pre-symptomatic AD in a population-based setting has not yet been investigated. In this study, we investigated if the disease timelines constructed in a case-controlled setting, with subjects stratified according to APOE status, are generalizable to a population-based cohort, and if progression along these disease timelines is predictive of AD. Seven volumetric biomarkers derived from structural MRI were considered. We estimated APOE-specific disease timelines of changes in these biomarkers using a recently proposed method called co-initialized discriminative event-based modeling (co-init DEBM). This method can also estimate a disease stage for new subjects by calculating their position along the disease timelines. The model was trained and cross-validated on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and tested on the population-based Rotterdam Study (RS) cohort. We compared the diagnostic and prognostic value of the disease stage in the two cohorts. Furthermore, we investigated if the rate of change of disease stage in RS participants with longitudinal MRI data was predictive of AD. In ADNI, the estimated disease timeslines for ϵ4 non-carriers and carriers were found to be significantly different from one another (p<0.001). The estimate disease stage along the respective timelines distinguished AD subjects from controls with an AUC of 0.83 in both APOE ϵ4 non-carriers and carriers. In the RS cohort, we obtained an AUC of 0.83 and 0.85 in ϵ4 non-carriers and carriers, respectively. Progression along the disease timelines as estimated by the rate of change of disease stage showed a significant difference (p<0.005) for subjects with pre-symptomatic AD as compared to the general aging population in RS. It distinguished pre-symptomatic AD subjects with an AUC of 0.81 in APOE ϵ4 non-carriers and 0.88 in carriers, which was better than any individual volumetric biomarker, or its rate of change, could achieve. Our results suggest that co-init DEBM trained on case-controlled data is generalizable to a population-based cohort setting and that progression along the disease timelines is predictive of the development of AD in the general population. We expect that this approach can help to identify at-risk individuals from the general population for targeted clinical trials as well as to provide biomarker based objective assessment in such trials.ImPhys/Computational ImagingImPhys/Medical ImagingBiomechanical Engineerin
Differences Between MR Brain Region Segmentation Methods: Impact on Single-Subject Analysis
For the segmentation of magnetic resonance brain images into anatomical regions, numerous fully automated methods have been proposed and compared to reference segmentations obtained manually. However, systematic differences might exist between the resulting segmentations, depending on the segmentation method and underlying brain atlas. This potentially results in sensitivity differences to disease and can further complicate the comparison of individual patients to normative data. In this study, we aim to answer two research questions: 1) to what extent are methods interchangeable, as long as the same method is being used for computing normative volume distributions and patient-specific volumes? and 2) can different methods be used for computing normative volume distributions and assessing patient-specific volumes? To answer these questions, we compared volumes of six brain regions calculated by five state-of-the-art segmentation methods: Erasmus MC (EMC), FreeSurfer (FS), geodesic information flows (GIF), multi-atlas label propagation with expectation–maximization (MALP-EM), and model-based brain segmentation (MBS). We applied the methods on 988 non-demented (ND) subjects and computed the correlation (PCC-v) and absolute agreement (ICC-v) on the volumes. For most regions, the PCC-v was good ((Formula presented.)), indicating that volume differences between methods in ND subjects are mainly due to systematic differences. The ICC-v was generally lower, especially for the smaller regions, indicating that it is essential that the same method is used to generate normative and patient data. To evaluate the impact on single-subject analysis, we also applied the methods to 42 patients with Alzheimer’s disease (AD). In the case where the normative distributions and the patient-specific volumes were calculated by the same method, the patient’s distance to the normative distribution was assessed with the z-score. We determined the diagnostic value of this z-score, which showed to be consistent across methods. The absolute agreement on the AD patients’ z-scores was high for regions of thalamus and putamen. This is encouraging as it indicates that the studied methods are interchangeable for these regions. For regions such as the hippocampus, amygdala, caudate nucleus and accumbens, and globus pallidus, not all method combinations showed a high ICC-z. Whether two methods are indeed interchangeable should be confirmed for the specific application and dataset of interest.ImPhys/Medical ImagingImPhys/Computational Imagin
The value of hippocampal volume, shape, and texture for 11-year prediction of dementia: a population-based study
Hippocampal volume and shape are known magnetic resonance imaging biomarkers of neurodegeneration. Recently, hippocampal texture has been shown to improve prediction of dementia in patients with mild cognitive impairment, but it is unknown whether texture adds prognostic information beyond volume and shape and whether the predictive value extends to cognitively healthy individuals. Using 510 subjects from the Rotterdam Study, a prospective, population-based cohort study, we investigated if hippocampal volume, shape, texture, and their combination were predictive of dementia and determined how predictive performance varied with time to diagnosis and presence of early clinical symptoms of dementia. All features showed significant predictive performance with the area under the receiver operating characteristic curve ranging from 0.700 for texture alone to 0.788 for the combination of volume and texture. Although predictive performance extended to those without objective cognitive complaints or mild cognitive impairment, performance decreased with increasing follow-up time. We conclude that a combination of multiple hippocampal features on magnetic resonance imaging performs better in predicting dementia in the general population than any feature by itself.ImPhys/Quantitative Imagin
Weakly supervised object detection with 2D and 3D regression neural networks
Finding automatically multiple lesions in large images is a common problem in medical image analysis. Solving this problem can be challenging if, during optimization, the automated method cannot access information about the location of the lesions nor is given single examples of the lesions. We propose a new weakly supervised detection method using neural networks, that computes attention maps revealing the locations of brain lesions. These attention maps are computed using the last feature maps of a segmentation network optimized only with global image-level labels. The proposed method can generate attention maps at full input resolution without need for interpolation during preprocessing, which allows small lesions to appear in attention maps. For comparison, we modify state-of-the-art methods to compute attention maps for weakly supervised object detection, by using a global regression objective instead of the more conventional classification objective. This regression objective optimizes the number of occurrences of the target object in an image, e.g. the number of brain lesions in a scan, or the number of digits in an image. We study the behavior of the proposed method in MNIST-based detection datasets, and evaluate it for the challenging detection of enlarged perivascular spaces – a type of brain lesion – in a dataset of 2202 3D scans with point-wise annotations in the center of all lesions in four brain regions. In MNIST-based datasets, the proposed method outperforms the other methods. In the brain dataset, the weakly supervised detection methods come close to the human intrarater agreement in each region. The proposed method reaches the best area under the curve in two out of four regions, and has the lowest number of false positive detections in all regions, while its average sensitivity over all regions is similar to that of the other best methods. The proposed method can facilitate epidemiological and clinical studies of enlarged perivascular spaces and help advance research in the etiology of enlarged perivascular spaces and in their relationship with cerebrovascular diseases.ImPhys/Medical ImagingImPhys/Computational Imagin
Predicting Global Cognitive Decline in the General Population Using the Disease State Index
Background: Identifying persons at risk for cognitive decline may aid in early detection of persons at risk of dementia and to select those that would benefit most from therapeutic or preventive measures for dementia. Objective: In this study we aimed to validate whether cognitive decline in the general population can be predicted with multivariate data using a previously proposed supervised classification method: Disease State Index (DSI). Methods: We included 2,542 participants, non-demented and without mild cognitive impairment at baseline, from the population-based Rotterdam Study (mean age 60.9 ± 9.1 years). Participants with significant global cognitive decline were defined as the 5% of participants with the largest cognitive decline per year. We trained DSI to predict occurrence of significant global cognitive decline using a large variety of baseline features, including magnetic resonance imaging (MRI) features, cardiovascular risk factors, APOE-ε4 allele carriership, gait features, education, and baseline cognitive function as predictors. The prediction performance was assessed as area under the receiver operating characteristic curve (AUC), using 500 repetitions of 2-fold cross-validation experiments, in which (a randomly selected) half of the data was used for training and the other half for testing. Results: A mean AUC (95% confidence interval) for DSI prediction was 0.78 (0.77–0.79) using only age as input feature. When using all available features, a mean AUC of 0.77 (0.75–0.78) was obtained. Without age, and with age-corrected features and feature selection on MRI features, a mean AUC of 0.70 (0.63–0.76) was obtained, showing the potential of other features besides age. Conclusion: The best performance in the prediction of global cognitive decline in the general population by DSI was obtained using only age as input feature. Other features showed potential, but did not improve prediction. Future studies should evaluate whether the performance could be improved by new features, e.g., longitudinal features, and other prediction methods.ImPhys/Computational ImagingBiomechanical Engineerin
Resistance to developing brain pathology due to vascular risk factors: the role of educational attainment
Brain pathology develops at different rates between individuals with similar burden of risk factors, possibly explained by brain resistance. We examined if education contributes to brain resistance by studying its influence on the association between vascular risk factors and brain pathology. In 4111 stroke-free and dementia-free community-dwelling participants (62.9 ± 10.7 years), we explored the association between vascular risk factors (hypertension and the Framingham Stroke Risk Profile [FRSP]) and imaging markers of brain pathology (markers of cerebral small vessel disease and brain volumetry), stratified by educational attainment level. Associations of hypertension and FSRP with markers of brain pathology were not significantly different between levels of educational attainment. Certain associations appeared weaker in those with higher compared to lower educational attainment, particularly for white matter hyperintensities (WMH). Supplementary residual analyses showed significant associations between higher educational attainment and stronger resistance to WMH among others. Our results suggest a role for educational attainment in resistance to vascular brain pathology. Yet, further research is needed to better characterize determinants of brain resistance.ImPhys/Medical ImagingImPhys/Computational Imagin