6 research outputs found

    Combined targeting of the p53 and pRb pathway in neuroblastoma does not lead to synergistic responses

    No full text
    BACKGROUND: Despite intensive treatment protocols and recent advances, neuroblastomas still account for approximately 15% of all childhood cancer deaths. In contrast with adult cancers, p53 pathway inactivation in neuroblastomas is rarely caused by p53 mutation but rather by altered MDM2 or p14ARF expression. Moreover, neuroblastomas are characterised by high proliferation rates, frequently triggered by pRb pathway dysfunction due to aberrant expression of cyclin D1, CDK4 or p16INK4a. Simultaneous disturbance of these pathways can occur via co-amplification of MDM2 and CDK4 or homozygous deletion of CDKN2A, which encodes both p14ARF and p16INK4a. METHODS AND RESULTS: We examined whether both single and combined inhibition of MDM2 and CDK4/6 is effective in reducing neuroblastoma cell viability. In our panel of ten cell lines with a spectrum of aberrations in the p53 and pRb pathway, idasanutlin and abemaciclib were the most potent MDM2 and CDK4/6 inhibitors, respectively. No correlation was observed between the genetic background and response to the single inhibitors. We confirmed this lack of correlation in isogenic systems overexpressing MDM2 and/or CDK4. In addition, combined inhibition did not result in synergistic effects. Instead, abemaciclib diminished the pro-apoptotic effect of idasanutlin, leading to slightly antagonistic effects. In vivo treatment with idasanutlin and abemaciclib led to reduced tumour growth compared with single drug treatment, but no synergistic response was observed. CONCLUSION: We conclude that p53 and pRb pathway aberrations cannot be used as predictive biomarkers for neuroblastoma sensitivity to MDM2 and/or CDK4/6 inhibitors. Moreover, we advise to be cautious with combining these inhibitors in neuroblastomas

    Combined targeting of the p53 and pRb pathway in neuroblastoma does not lead to synergistic responses

    Get PDF
    BACKGROUND: Despite intensive treatment protocols and recent advances, neuroblastomas still account for approximately 15% of all childhood cancer deaths. In contrast with adult cancers, p53 pathway inactivation in neuroblastomas is rarely caused by p53 mutation but rather by altered MDM2 or p14ARF expression. Moreover, neuroblastomas are characterised by high proliferation rates, frequently triggered by pRb pathway dysfunction due to aberrant expression of cyclin D1, CDK4 or p16INK4a. Simultaneous disturbance of these pathways can occur via co-amplification of MDM2 and CDK4 or homozygous deletion of CDKN2A, which encodes both p14ARF and p16INK4a. METHODS AND RESULTS: We examined whether both single and combined inhibition of MDM2 and CDK4/6 is effective in reducing neuroblastoma cell viability. In our panel of ten cell lines with a spectrum of aberrations in the p53 and pRb pathway, idasanutlin and abemaciclib were the most potent MDM2 and CDK4/6 inhibitors, respectively. No correlation was observed between the genetic background and response to the single inhibitors. We confirmed this lack of correlation in isogenic systems overexpressing MDM2 and/or CDK4. In addition, combined inhibition did not result in synergistic effects. Instead, abemaciclib diminished the pro-apoptotic effect of idasanutlin, leading to slightly antagonistic effects. In vivo treatment with idasanutlin and abemaciclib led to reduced tumour growth compared with single drug treatment, but no synergistic response was observed. CONCLUSION: We conclude that p53 and pRb pathway aberrations cannot be used as predictive biomarkers for neuroblastoma sensitivity to MDM2 and/or CDK4/6 inhibitors. Moreover, we advise to be cautious with combining these inhibitors in neuroblastomas

    High-throughput screening identifies idasanutlin as a resensitizing drug for venetoclax-resistant neuroblastoma cells

    No full text
    Neuroblastoma tumors frequently overexpress the anti-apoptotic protein B-cell lymphoma/leukemia 2 (BCL-2). We previously showed that treating BCL-2-dependent neuroblastoma cells with the BCL-2 inhibitor venetoclax results in apoptosis, but unfortunately partial therapy resistance is observed. The current study describes the identification of drugs capable of resensitizing venetoclax-resistant neuroblastoma cells to venetoclax. To examine these effects, venetoclax resistance was induced in BCL-2-dependent neuroblastoma cell lines KCNR and SJNB12 by continuous exposure to high venetoclax concentrations. Nonresistant and venetoclax-resistant neuroblastoma cell lines were exposed to a 209-compound library in the absence and presence of venetoclax to identify compounds that were more effective in the venetoclax-resistant cell lines under venetoclax pressure. Top hits were further validated in combination with venetoclax using BCL-2-dependent neuroblastoma model systems. Overall, high-throughput drug screening identified the MDM2 inhibitor idasanutlin as a promising resensitizing agent for venetoclax-resistant neuroblastoma cell lines. Idasanutlin treatment induced BAX-mediated apoptosis in venetoclax-resistant neuroblastoma cells in the presence of venetoclax, whereas it caused p21-mediated growth arrest in control cells. In vivo combination treatment showed tumor regression and superior efficacy over single-agent therapies in a BCL-2-dependent neuroblastoma cell line xenograft and a patient-derived xenograft. However, xenografts less dependent on BCL-2 were not sensitive to venetoclax-idasanutlin combination therapy. This study demonstrates that idasanutlin can overcome resistance to the BCL-2 inhibitor venetoclax in preclinical neuroblastoma model systems, which supports clinical development of a treatment strategy combining the two therapies

    High-throughput screening identifies idasanutlin as a resensitizing drug for venetoclax-resistant neuroblastoma cells

    No full text
    Neuroblastoma tumors frequently overexpress the anti-apoptotic protein B-cell lymphoma/leukemia 2 (BCL-2). We previously showed that treating BCL-2-dependent neuroblastoma cells with the BCL-2 inhibitor venetoclax results in apoptosis, but unfortunately partial therapy resistance is observed. The current study describes the identification of drugs capable of resensitizing venetoclax-resistant neuroblastoma cells to venetoclax. To examine these effects, venetoclax resistance was induced in BCL-2-dependent neuroblastoma cell lines KCNR and SJNB12 by continuous exposure to high venetoclax concentrations. Nonresistant and venetoclax-resistant neuroblastoma cell lines were exposed to a 209-compound library in the absence and presence of venetoclax to identify compounds that were more effective in the venetoclax-resistant cell lines under venetoclax pressure. Top hits were further validated in combination with venetoclax using BCL-2-dependent neuroblastoma model systems. Overall, high-throughput drug screening identified the MDM2 inhibitor idasanutlin as a promising resensitizing agent for venetoclax-resistant neuroblastoma cell lines. Idasanutlin treatment induced BAX-mediated apoptosis in venetoclax-resistant neuroblastoma cells in the presence of venetoclax, whereas it caused p21-mediated growth arrest in control cells. In vivo combination treatment showed tumor regression and superior efficacy over single-agent therapies in a BCL-2-dependent neuroblastoma cell line xenograft and a patient-derived xenograft. However, xenografts less dependent on BCL-2 were not sensitive to venetoclax-idasanutlin combination therapy. This study demonstrates that idasanutlin can overcome resistance to the BCL-2 inhibitor venetoclax in preclinical neuroblastoma model systems, which supports clinical development of a treatment strategy combining the two therapies

    High-Throughput Screening Identifies Idasanutlin as a Resensitizing Drug for Venetoclax-Resistant Neuroblastoma Cells

    No full text
    Neuroblastoma tumors frequently overexpress the anti-apoptotic protein B-cell lymphoma/leukemia 2 (BCL-2). We previously showed that treating BCL-2-dependent neuroblastoma cells with the BCL-2 inhibitor venetoclax results in apoptosis, but unfortunately partial therapy resistance is observed. The current study describes the identification of drugs capable of resensitizing venetoclax-resistant neuroblastoma cells to venetoclax. To examine these effects, venetoclax resistance was induced in BCL-2-dependent neuroblastoma cell lines KCNR and SJNB12 by continuous exposure to high venetoclax concentrations. Non-resistant and venetoclax-resistant neuroblastoma cell lines were exposed to a 209-compound library in the absence and presence of venetoclax to identify compounds that were more effective in the venetoclax-resistant cell lines under venetoclax pressure. Top hits were further validated in combination with venetoclax using BCL-2-dependent neuroblastoma model systems. Overall, high-throughput drug screening identified the MDM2 inhibitor idasanutlin as a promising resensitizing agent for venetoclax-resistant neuroblastoma cell lines. Idasanutlin treatment induced BAX-mediated apoptosis in venetoclax-resistant neuroblastoma cells in the presence of venetoclax, whereas it caused p21-mediated growth arrest in control cells. In vivo combination treatment showed tumor regression and superior efficacy over single-agent therapies in a BCL-2-dependent neuroblastoma cell line xenograft and a patient-derived xenograft. However, xenografts less dependent on BCL-2 were not sensitive to venetoclax-idasanutlin combination therapy. This study demonstrates that idasanutlin can overcome resistance to the BCL-2 inhibitor venetoclax in preclinical neuroblastoma model systems, which supports clinical development of a treatment strategy combining the two therapies

    High-Throughput Screening Identifies Idasanutlin as a Resensitizing Drug for Venetoclax-Resistant Neuroblastoma Cells

    No full text
    Neuroblastoma tumors frequently overexpress the anti-apoptotic protein B-cell lymphoma/leukemia 2 (BCL-2). We previously showed that treating BCL-2-dependent neuroblastoma cells with the BCL-2 inhibitor venetoclax results in apoptosis, but unfortunately partial therapy resistance is observed. The current study describes the identification of drugs capable of resensitizing venetoclax-resistant neuroblastoma cells to venetoclax. To examine these effects, venetoclax resistance was induced in BCL-2-dependent neuroblastoma cell lines KCNR and SJNB12 by continuous exposure to high venetoclax concentrations. Non-resistant and venetoclax-resistant neuroblastoma cell lines were exposed to a 209-compound library in the absence and presence of venetoclax to identify compounds that were more effective in the venetoclax-resistant cell lines under venetoclax pressure. Top hits were further validated in combination with venetoclax using BCL-2-dependent neuroblastoma model systems. Overall, high-throughput drug screening identified the MDM2 inhibitor idasanutlin as a promising resensitizing agent for venetoclax-resistant neuroblastoma cell lines. Idasanutlin treatment induced BAX-mediated apoptosis in venetoclax-resistant neuroblastoma cells in the presence of venetoclax, whereas it caused p21-mediated growth arrest in control cells. In vivo combination treatment showed tumor regression and superior efficacy over single-agent therapies in a BCL-2-dependent neuroblastoma cell line xenograft and a patient-derived xenograft. However, xenografts less dependent on BCL-2 were not sensitive to venetoclax-idasanutlin combination therapy. This study demonstrates that idasanutlin can overcome resistance to the BCL-2 inhibitor venetoclax in preclinical neuroblastoma model systems, which supports clinical development of a treatment strategy combining the two therapies
    corecore