4 research outputs found

    Finding Core Members of a Hedonic Game

    Get PDF
    Agent-based modeling (ABM) is a frequently used paradigm for social simulation; however, there is little evidence of its use in strategic coalition formations. There are few models that explore coalition formation and even fewer that validate their results against an expected outcome. Cooperative game theory is often used to study strategic coalition formation but solving games involving a significant number of agents is computationally intractable. However, there is a natural linkage between ABM and the study of strategic coalition formation. A foundational feature of ABM is the interaction of agents and their environment. Coalition formation is primarily the result of interactions between agents to form collective groups. The ABM paradigm provides a platform in which simple rules and interactions between agents can produce a macro level effect without large computational requirements. This research proposes a hybrid model combining Agent-based modeling and cooperative game theory to find members of a cooperative game’s solution. The algorithm will be applied to the core solution of hedonic games. The core solution is the most common solution set. Hedonic games are a subset of cooperative games whereby agents’ utilities are defined solely by a preference relation over the coalitions of which they are members. The utility of an agent is non-transferrable; there can be no transfer, wholly or in part, of the utility of one agent to another. Determining the core of a hedonic game is NP-complete. The heuristic algorithm utilizes the stochastic nature of ABM interactions to minimize computational complexity. The algorithm has seven coalition formation functions. Each function randomly selects agents to create new coalitions; if the new coalition improves the utility of the agents, it is incorporated into the coalition structure otherwise it is discarded. This approach reduces the computational requirements. This work contributes to the modeling and simulation body of knowledge by providing researchers with a generalized ABM algorithm for forming strategic coalition structures. It provides an empirically validated model based on existing theory that utilizes sound mathematics to reduce the computational complexity and demonstrates the advantages of combining strategic, analytical models with Agent-based models for the study of coalition formation

    Finding Core Members of Cooperative Games using Agent-Based Modeling

    Full text link
    Agent-based modeling (ABM) is a powerful paradigm to gain insight into social phenomena. One area that ABM has rarely been applied is coalition formation. Traditionally, coalition formation is modeled using cooperative game theory. In this paper, a heuristic algorithm is developed that can be embedded into an ABM to allow the agents to find coalition. The resultant coalition structures are comparable to those found by cooperative game theory solution approaches, specifically, the core. A heuristic approach is required due to the computational complexity of finding a cooperative game theory solution which limits its application to about only a score of agents. The ABM paradigm provides a platform in which simple rules and interactions between agents can produce a macro-level effect without the large computational requirements. As such, it can be an effective means for approximating cooperative game solutions for large numbers of agents. Our heuristic algorithm combines agent-based modeling and cooperative game theory to help find agent partitions that are members of a games' core solution. The accuracy of our heuristic algorithm can be determined by comparing its outcomes to the actual core solutions. This comparison achieved by developing an experiment that uses a specific example of a cooperative game called the glove game. The glove game is a type of exchange economy game. Finding the traditional cooperative game theory solutions is computationally intensive for large numbers of players because each possible partition must be compared to each possible coalition to determine the core set; hence our experiment only considers games of up to nine players. The results indicate that our heuristic approach achieves a core solution over 90% of the time for the games considered in our experiment.Comment: 19 page

    Simulation for Cybersecurity: State of the Art and Future Directions

    Get PDF
    In this article, we provide an introduction to simulation for cybersecurity and focus on three themes: (1) an overview of the cybersecurity domain; (2) a summary of notable simulation research efforts for cybersecurity; and (3) a proposed way forward on how simulations could broaden cybersecurity efforts. The overview of cybersecurity provides readers with a foundational perspective of cybersecurity in the light of targets, threats, and preventive measures. The simulation research section details the current role that simulation plays in cybersecurity, which mainly falls on representative environment building; test, evaluate, and explore; training and exercises; risk analysis and assessment; and humans in cybersecurity research. The proposed way forward section posits that the advancement of collecting and accessing sociotechnological data to inform models, the creation of new theoretical constructs, and the integration and improvement of behavioral models are needed to advance cybersecurity efforts

    A Call to Arms: Standards for Agent-Based Modeling and Simulation

    No full text
    Standards are as old as civilization itself and they are vital to human development. Standards touch almost every part of our lives, from the water we drink to the language used to write this article. A sign of a good standard is one that we do not notice. Good standards exist and so do processes and organizations to create and maintain them. As agent-based modeling and simulation matures as a methodology, a discussion of standards applicable to it becomes increasingly important. Descriptive standards for agent-based models, such as the Overview, Design concepts, and Details protocol and agent-based extensions to the Unified Modeling Language, have already begun to emerge. Software tools for implementing such models, such as Netlogo and Repast Simphony, are increasingly well-known and have the potential to become de facto standards among the wider scientific community for agent-based simulation. Based on the findings of a series of workshops that brought together experts throughout the modeling and simulation community, we argue that agent-based modeling and simulation is no different from the other emerging technical subjects in the sense that standards, both existing and new, may be applicable to it, and that the community should both adopt existing standards that are relevant and exploit the already existing standards processes and organizations to develop new ones
    corecore