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ABSTRACT 

FINDING CORE MEMBERS OF A HEDONIC GAME 

Daniele M. Vernon-Bido 

Old Dominion University, 2022 

Dr. Andrew J. Collins 
 

 

Agent-based modeling (ABM) is a frequently used paradigm for social simulation; 

however, there is little evidence of its use in strategic coalition formations. There are few models 

that explore coalition formation and even fewer that validate their results against an expected 

outcome. Cooperative game theory is often used to study strategic coalition formation but 

solving games involving a significant number of agents is computationally intractable. However, 

there is a natural linkage between ABM and the study of strategic coalition formation. A 

foundational feature of ABM is the interaction of agents and their environment. Coalition 

formation is primarily the result of interactions between agents to form collective groups. The 

ABM paradigm provides a platform in which simple rules and interactions between agents can 

produce a macro level effect without large computational requirements.  

This research proposes a hybrid model combining Agent-based modeling and cooperative 

game theory to find members of a cooperative game’s solution. The algorithm will be applied to 

the core solution of hedonic games. The core solution is the most common solution set. Hedonic 

games are a subset of cooperative games whereby agents’ utilities are defined solely by a 

preference relation over the coalitions of which they are members. The utility of an agent is non-



 

transferrable; there can be no transfer, wholly or in part, of the utility of one agent to another. 

Determining the core of a hedonic game is NP-complete.  

The heuristic algorithm utilizes the stochastic nature of ABM interactions to minimize 

computational complexity. The algorithm has seven coalition formation functions. Each function 

randomly selects agents to create new coalitions; if the new coalition improves the utility of the 

agents, it is incorporated into the coalition structure otherwise it is discarded. This approach 

reduces the computational requirements. 

This work contributes to the modeling and simulation body of knowledge by providing 

researchers with a generalized ABM algorithm for forming strategic coalition structures. It 

provides an empirically validated model based on existing theory that utilizes sound mathematics 

to reduce the computational complexity and demonstrates the advantages of combining strategic, 

analytical models with Agent-based models for the study of coalition formation. 
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1.0 INTRODUCTION 

Coalition formation is most often reviewed through the lens of cooperative game theory. 

However, there is a natural linkage between coalition formation and Agent-based modeling. A 

coalition can be described as “community of concerned agents, who, on the grounds of 

negotiation protocols, make a decision to cooperate in order to complete a certain task or to reach 

a certain goal” [1]. Agent-based modeling (ABM) is a frequently used paradigm for social 

simulation [2-4]; however, there is little evidence of its use in coalition formations. There are 

few models that explore coalition formation and even fewer that validate their results against an 

expected outcome.  

Cooperative game theory is often used to study strategic coalition formation, but solving 

games involving a significant number of agents is computationally intractable [5]. There are 

different types of solutions for cooperative games and different types of hedonic games. One of 

the most common solution sets is the core by Gillies [6] and one of the most versatile set of 

games are hedonic games – those that are defined by an agent’s preference for a coalition. 

However, finding the core of a hedonic game, for a game of a significant size, is NP-Complete 

[7]. 

The ABM paradigm provides a platform in which simple rules and interactions between 

agents can produce a macro level effect without the large computational requirements. I believe 

it can be an effective means for approximating cooperative game solutions for large numbers of 

agents providing the theory can be adequately represented by the simulation code.  
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1.1 RESEARCH QUESTION 

How can an ABM algorithm be designed such that its outcome is a member of the core 

solution set of a hedonic game greater than 90% of the time and the computation of the outcome 

completes in polynomial time? 

1.2 PROBLEM STATEMENT 

Coalition formation problems are prevalent in many disciplines. However, examining all 

possible coalition structures is computationally intensive. Coalition structures are the partitioned 

set of agents such that each agent in the set belongs to exactly one coalition and there are no 

empty coalitions [5]. The number of possible coalitions is given by the Bell numbers [8], the 

count of possible set partitions in combinatorial math. Table 1 provides a sample of the 

exponential growth of coalition structures to be explored as the number of agents increases.  

Table 1: Exponential growth of possible coalition structures based on the number of agents. 

# of Agents 

# of Possible Coalition 

Structures 

3 5 

5 52 

10 115,975 

15 1,382,958,545 

20 51,724,158,235,372 

 

Cooperative game theory is an economics-based system derived from the work of Von 

Neumann and Morgenstern [9] and first described by Aumann and Drèze [10] that relies on 

rational decision makers forming coalitions based on utility it provides. Cooperative games are 

those in which the agents of the game “can make binding agreements about the distribution of 

payoffs or the choice of strategies…” [11]. Cooperative games have many possible structures; 

agents can decide how to divide their utilities in a coalition (transferrable utility), or they cannot 



3 
 

not allow utility transfers (non-transferrable utility). One specific type of cooperative game, 

hedonic games, is a non-transferrable utility game in which the agents’ utilities are based on their 

preference for that coalition. Chalkiadakis, Elkind, and Wooldridge [5] note that any cooperative 

game can be described as a hedonic game.  

There are different solution sets associated with cooperative games but the most 

commonly used one is the core solution set defined by Gillies [6]. Core members of a hedonic 

game represent a stable coalition structure. There is value in being able to find a stable coalition 

structure in the context of coalition formation. However, finding the core solution for all but the 

smallest number of agents is computationally taxing. The computation complexity of the 

coalition structure generation and comparisons using a naïve or “brute force” algorithm has a 

worst case magnitude of O(nn) [12]. In fact, determining the core of a hedonic game is NP-

Complete [7] as is determining if a coalition structure is a core member [13]. 

NP-Complete problems, by definition, are not solvable except in trivial cases in 

polynomial time. However, Agent-based modeling and simulation (ABMS) is a technique that 

might be used to aid in finding a stable coalition structure. There are examples of models that 

have combined ABMS and Cooperative Game Theory but have not demonstrated the accuracy or 

sufficiency of their models with respect to finding a core stable coalition structure. Shehory and 

Kraus [14] combined cooperative game theory in hybrid models that determine coalitions for 

task allocation in multi-agent systems. Collins and Frydenlund [15] model refugee group 

formation and movement using an Agent-based model and the underlying principles of 

cooperative game theory.  

Bonnevay, Kabachi, and Lamure [16] provide some insight into agent coalition 

rationality, but they neither consistently find a stable coalition structure nor provide a 
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measurement for the frequency in which a stable structure is achieved. Collins and Frydenlund 

[15]  use an adaptation of the concept of the core by having coalitions form based on the agents’ 

utility of group size and speed; agents at each time step test a random coalition to determine if 

the new coalition improves the value for all member in the new coalition. Like Bonnevay et al., 

there is no measurement of how successful their algorithm is at reaching a core coalition 

structure. Janovsky and DeLoach [17] use a multi-agent simulation that allows agents to enter 

and leave coalitions based on the value of the coalition. While they compare their results to the 

current state of the art C-Link [18] system, their application does not provide a true 

representation of the core solution of self-interested agents. 

Each of these models demonstrate the benefit of combining cooperative game theory with 

ABMS. However, none of the models provide any empirical validation against the defined 

cooperative game theory solution. My objective is to provide an Agent-based model that is 

capable of finding a core member greater than 90% of the time and validating that model through 

empirical statistical means. The 90% objective is a means by which we can determine the level 

of uncertainty that we are willing to accept. 90% is chosen as a compromise between the 

traditional 95% that is often used in engineering applications and the traditional rate used with 

Cronbach’s [19] alpha of 80%. Cronbach’s alpha is a measure of internal consistency. It should 

be noted that the results provided for the experiments will be given as a frequency measure that 

will allow researchers to accept or reject the level of error based on their requirements. 

1.3 MOTIVATION 

Although determining core stable coalitions, and cooperative games in general, are 

normally considered economic theory problems, coalition formation problems appear in many 

disciplines. Coalitions are temporary alliances of groups or individuals that combine resources 



5 
 

and/or power for a particular aim [20]. The study of coalition formation and stable coalition 

structures is used in many disciplines. Political scientists such as Laver and Shepsle [21] and 

Bäck [22] examine the formation of governments and party coalitions. Studies of voting blocs 

[23, 24] strive to understand the possible combinations that will occur to secure ample voting or 

veto power to win an election or pass a resolution. In ecology, Silk et al. [25], Thierry [26], and 

Janson [27] study coalition formation among primates. Multi-agent simulations use coalition 

formation theories to allocate effectively tasks among different agents [14, 28-30]. Military 

coalition partners strengthen their ability to attack or defend by virtue of their combined 

resources and efforts [31]. Businesses form partnerships, communities form action groups, and 

consumers band together with the intention of achieving a goal [32].  

Coalitions are a pervasive part of our social existence. The number of possible coalitions 

makes it is difficult to know which coalitions are likely to form, which coalitions will be 

profitable to their members, and which coalitions will be stable. The implications of coalition 

formation are critical to decision makers. The choice of coalitions can aid or hinder task 

completion. Poor choices can lead to loss of market share for businesses [33], insufficient 

military power [34], poor distribution of public goods and services, or political instability. The 

implications of coalition formation studies are broad and cross many disciplines. The technique 

in studying coalition formation, however, has most often been cooperative game theory. 

Although cooperative game theory is the predominate technique for studying coalition 

formation, coalition formation has characteristics that make it a candidate for study using Agent-

based modeling and simulation (ABMS). Agent-based modeling is a popular analytic method for 

the social sciences [35]. The Agent-based modeling paradigm is flexible with its inherent ability 

to demonstrate complex interactions through simple rules. It “concerns itself with modeling 



6 
 

agent interactions… (1) who is connected to who and (2) the mechanisms governing the nature 

of the interactions” [36]. Coalition formation can be described as the various connections of 

agents and their interactions while the simple rules can be the algorithmic comparison based on 

cooperative game theory. 

A hybrid Agent-based/Cooperative Game Theory (CGT) model has advantages and 

disadvantages. This type of model operates in a designated computation time. This allows the 

researcher to examine significantly large sets of agents without the taxing computational 

overhead. The model can be designed to operate for a predetermined number of “simulation 

ticks” and the resulting solution will always be the best option tested to that point. That is, it will 

discard any solution that results in a worse condition than the current. Further, the simulation 

model will always generate a coalition structure. While the core solution set may be empty, the 

simulation model will provide a “close” coalition structure – that is, it will find a coalition 

structure that was at least as core stable as any other coalition structure it encountered. The 

disadvantage is that it is impossible to know whether the coalition structure produced is 

completely core stable. That is, it is impossible to be certain if the ABMS produced a coalition 

structure that is a member of the core solution. This level of uncertainty exists in many ABMS 

due to the inherently stochastic and flexible nature of the models. There are validation techniques 

that can be used to understand and, in some cases, mitigate this concern. 

1.4 APPROACH 

This research advances the work of Collins and Frydenlund [37]. They present a heuristic 

algorithm that provides a series of routines that coordinate the rearrangement of coalitions using 

cooperative game theory mathematics to assess which coalitions are accepted. Based on this 

work, I created a heuristic hybrid algorithm that will provide a means for simulating strategic 



7 
 

coalition structures, provide a statistical comparison of the algorithm to the mathematical 

framework, and demonstrate improvements in the computational time required by the 

mathematical computations and the original algorithm upon which it is based. The algorithm will 

be tested using a set of cooperative games known as hedonic games. Hedonic games, first named 

by Drèze and Greenberg [38], are those in which agents have a preference for belonging to a 

specific coalition and that preference is represented by a utility function [38]. Preferences cannot 

be sub-divided among coalition members; therefore, hedonic games are a subset of non-

transferrable utility games (NTU) as defined by Aumann and Peleg [39]. All NTU games can be 

defined as hedonic through their utility function. As such, hedonic games represent a wide array 

of possible cooperative games. 

I attempt to find a stable coalition structure of the hedonic game as defined by the core 

solution set. It is neither simple nor trivial to determine a stable coalition structure of a hedonic 

game. Finding the core solution of a hedonic game is NP-complete [7] and determining core 

membership of a hedonic game is also NP-complete [13]. A core coalition structure is one in 

which no coalition members have an incentive to defect to another coalition. Mathematically, 

this is determined by comparing every coalition possible for each agent against the coalition 

there are in within each coalition structure. 

There are advantages and disadvantages in utilizing an ABM/CGT hybrid model. Agent-

based models provide a platform that easily handles many heterogeneous agents. This allows for 

defining the individual preferences as utility functions of the agents. The ability to apply simple 

rules to individual agents allows for an algorithm that is linear with respect to the agents rather 

than exponential. Additionally, the simulation can determine the best solution tested at the end of 

each successful run. A disadvantage of ABM/CGT hybrid is the inability to properly identify if a 
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steady state is reached. The system runs for a predetermined number of time steps or until no 

changes have occurred within a given time. However, this does not guarantee that no other 

changes would not have occurred given additional time, or the solution reached is in the core. 

The core could, in fact, be empty or the system may have found a local maximum and ceased to 

change states. 

With this work, I aim to create a hybrid ABM/CGT model that finds a coalition structure 

that is reasonably comparable to those in a solution set. The model will incorporate the strategic 

nature of cooperative game theory into ABM and add to the modeling and simulation body of 

knowledge by creating a framework for merging ABM and cooperative game theory, providing a 

reusable model structure that applies to multiple types of games, and creating a validation 

structure that demonstrates the significance of the order of routine execution in strategic group 

formation. 

1.5 CONTRIBUTION 

This research is intended to advance simulation work in the field of coalition formation. 

It contributes to this field in the following manner: 

• Provides a hybrid model that directly applies to cooperative game theory. 

o The heuristic algorithm created for the ABCG model is empirically 

validated to ensure consistency with the underlying theory. 

• Provides a structure that efficiently stores and retrieves coalition values for 

comparisons. 

o Coalition values are calculated once and stored in a 2𝑁𝑥𝑁 matrix. 

o Agent membership in a coalition is binary: 0 for not a member and 1 for 

membership. A binary string is created from members and converted to a 
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decimal value. The decimal value is then used as the index for the matrix. 

This produces an efficient storage and retrieval mechanism for a large 

matrix. 

• Provides a method for using Agent-based modeling in the study of strategic 

coalition formation. 

o The ABCG model is reusable for different cooperative game solutions. 

The model stores the coalition values in a matrix that is independent of 

how they are calculated, and the comparisons can be easily modified to 

solve for different solution concepts. For example, instead of individual 

comparisons of the core, the coalition values could be summed for a social 

welfare result with no changes to the interaction methods or the coalition 

value storage or retrieval. 

1.6 ORGANIZATION 

The remainder of this work is organized into four chapters. The next chapter provides a 

literature review of cooperative game theory solutions, hedonic games, and the association of 

ABM with cooperative games. This is followed by a chapter that describes the research method I 

used to explore and validate my solution for finding a core member of a cooperative game. The 

section begins with a description of the technique used to generate and solve the hedonic games. 

This is followed by a description of my Agent-based Cooperative Game (ABCG) model. Details 

are provided on the experimentation method followed by a discussion on validation techniques 

that will be used in this research. The next chapter provides a review of the experimentation 

results and analysis. It reviews the results of the experiments and the statistical significance of 

the efforts. The final chapter presents my conclusions and future work. 
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2.0 LITERATURE REVIEW 

 In this research, I examine the use of a heuristic algorithm to find a coalition structure 

that is a member of a core hedonic game. This chapter provides the reader with information in 

the literature that is pertinent to this concept. My heuristic algorithm is an Agent-based model 

(ABM). The first section provides general information about Agent-based models, their use and 

limitations in social science. The next section provides information on cooperative game theory 

(CGT), cooperative games, and cooperative games solutions. This is followed by a discussion on 

the current ways ABM and CGT have been used in concert. I review benefits and gaps of the 

current methods in the literature and how my research partially addresses that gap. 

2.1 AGENT-BASED MODELING 

Gilbert [35] defines Agent-based modeling as “a computational method that enables a 

researcher to create, analyze, and experiment with models composed of agents that interact 

within an environment.” Macal and North [40] describe ABMS as an “approach to modeling 

systems comprised of autonomous interacting agents.” The benefits of ABM include its ability to 

represent natural systems with non-linear behavior, its ability to capture emergent or unexpected 

phenomena, and its flexibility [41]. The focus of Agent-based modeling is on individual data 

[42] and individual agents rather than the collective during the modeling process. This allows 

researchers to use a “bottom-up” method of study. That is, rather than a central control or an 

aggregated structure, each agent produces their unique results based on their interactions with 

other agents and/or their environment.  

Early research on Agent-based systems and multi-agent systems (MAS) referred to the 

structure as a society of agents that “interact together to coordinate their behavior and often 

cooperate to achieve some collective goal” [43]. This is reflected in various models and studies 
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that have been propagated. Epstein and Axtell [44], for example, use Agent-based models to 

show how self-organizing agents distribute wealth through interactions with the environment and 

with other agents. Schelling [45], even before Agent-based modeling was named, showed how 

simple rules and individual decisions affected group formations. He demonstrated how 

segregation occurred with mild biases based on the environment and agent interactions. This 

“bottom up” approach of individual interactions is a well-documented way for researchers to 

study group formations. However, strategic coalition formation is not often considered through 

the use of Agent-based modeling. It is usually studied using cooperative game theory [46]. 

2.2 COOPERATIVE GAMES 

Cooperative game theory is an analytic framework for exploring coalition formation by 

rational, self-interested decision makers [47]. Cooperative games are those involving more than 

two agents that can make binding agreements, explicit or implied, with respect to strategies and 

distribution of payoffs [5, 11, 48]. The cooperative game G consists of a non-empty set of agents, 

N = [1, 2, … , n] and a characteristic function 𝑣: 2𝑛  → ℝ which maps each coalition 𝐶 ⊆ 𝑁 to a 

real number v(C) also known as the value of the coalition [5]. The characteristic function defines 

the game in terms of the value a coalition can achieve regardless of the actions of agents not in 

the coalition [5, 46]. The characteristic function game is defined as G = (N,v).  

There are three broad categories of games: transferrable utility games, non-transferrable 

utility games, and hedonic games. Transferable utility (TU) games are those games that allow for 

agents to offer side payments or other divisions of the payoff to secure agent cooperation in the 

coalition [9]. Non-transferrable utility games (NTU) are those games without side payments [39]. 

Hedonic games, using the terminology coined by Drèze and Greenberg [38], are a subset of 

cooperative games with non-transferable utilities that represent a specific form of coalition 
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formation games where the total payoff for each member in each coalition is predetermined and 

known to all agents [49, 50]. They are unique in that the agents’ utility is dependent upon the 

members of their coalition [50, 51]. Gamson [20] expresses this in a more generalized manner 

expressing the coalition value  in terms of the payoff and a non-utilitarian strategy preference. In 

other words, each agent has an ordered or rank preference for all coalitions to which they are a 

party. 

Game theorists are interested in the rational outcomes or solutions of these games. The 

outcomes of a cooperative game are defined as the set of coalition structures and feasible payoff 

vectors associated with the game – (CS, X). Solving a game is dependent upon the valuation of 

the coalitions, the payoffs, and the desired result. 

2.2.1 SOLVING COOPERATIVE GAMES 

Sandholm, Larson, Anderson, Shehory and Tohme [30], Tohme and Sandholm [52] and 

Rahwan [53] divide the function of solving cooperative games into three main activities: (1) 

coalition structure generation; (2) determining and optimizing coalition values; and (3) dividing 

the payoff. The coalition structure generation is a known combinatorial problem. A coalition 

structure, also known as a partition, is a set of disjoint coalitions whose union is N = [1, 2, …, n] 

and the intersection of any of the subsets is null. The number of partitions that exists for a set of 

N agents is given by the Bell number (for details see [54]). Exhaustively searching the entire 

space has a complexity of 𝑂(𝑛𝑛). Researchers have demonstrated the ability to solve some 

problems with about 21 agents but they generally limit it to approximately 15 agents [30].   

The second part of solving a cooperative game, determining and optimizing coalition 

values, presents a different set of challenges. The coalition value, designated v(C), expresses the 

expected benefit or outcome that results from the coalition’s formation. Coalition value 
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determination is the process by which a relative numeric value is assigned to each possible 

coalition. For every set of n agents there are 2𝑛 − 1 possible coalitions and an infinite number of 

ways to assign values to them dependent upon the problem at hand. Once all coalition values are 

assigned, optimizing the coalition values is dependent on how optimization is defined. One form 

of optimization is social welfare. Social welfare is “the sum of all the values of all coalitions” 

[5]. Social welfare considers the overall valuation of the coalition structure without regard to the 

individual agent. 

Three ways of solving cooperative games when social welfare is the objective are linear 

programming, dynamic programming and Agent-based models. However, each method is 

computationally extensive, often requiring restrictions or limitations to handle the computational 

load. The basic linear feasibility program is as follows1: 

𝑥𝑖 ≥ 0 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ∈ 𝑁 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑔𝑒𝑛𝑡 𝑖 

∑ 𝑥𝑖 = 𝑣(𝑁)
𝑖∈𝑁

 𝑤ℎ𝑒𝑟𝑒 𝑣(𝑁) 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑎𝑛𝑑 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛 

∑ 𝑥𝑖 ≥ 𝑣(𝐶) 𝑤ℎ𝑒𝑟𝑒 𝑣(𝐶) 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛
𝑖∈𝐶

 

The number of constraints associated with this linear program is 2n + n + 1 and it yields a 

solution that maximizes social welfare. 

Dynamic programming is another technique used to efficiently examine the solution 

space of coalition structure generation. It can solve the coalition structure generation problem in 

polynomial time, (O(3n)) [55, 56] but the memory requirements are extensive [28, 56]. It does, 

however, guarantee finding a maximized value. Shehory and Kraus [14] reduce the complexity 

 
1 Linear feasibility programming assumes superadditivity of the game. That is, the value of two disjoint coalitions 
(𝐶1 ∩ 𝐶2 =  ∅) joining is greater than or equal to the sum of the values of the two coalitions: 𝑣(𝐶1 ∪ 𝐶2) ≥
 𝑣(𝐶1) + 𝑣(𝐶2) 
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by creating an algorithm that restricts the maximum coalition size allowed. Sandholm et al. [30] 

utilize a coalition structure graph similar to Figure 1 and bound the search by level. They prove 

that they can provide a tight bound, but not an optimal solution, by searching only the bottom 

two layers. 

 

 

Figure 1: Coalition structure graph – each level indicates a coalition with one member added (if viewed 
from top to bottom) or removed (if viewed from bottom to top). Adapted from Sandholm et al. [30] 

Agent-based models are used to manage cooperative tasks rather than necessarily finding 

the optimum result. Shehory and Kraus [14], for example, show a multi-agent system problem in 

which agents must cooperate to move blocks of varying sizes. Completion of each task has an 

associated value; each agent in the coalition adds a cost.  The value of the coalition is then 

assigned as the difference between the value of task completion and the cost of the coalition. 

Ramchun et al. [57] also incorporate size minimization into the coalition value determination. 

Zolezzi and Rudnick [58] use a cost basis for coalition valuation.  

Agents form coalitions to achieve common goals. Sometimes the goals seek to maximize 

social welfare. Other times agents are looking to maximize personal gain. In these instances, an 

important component is the distribution of the payoff the agents receive from the coalition 
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formation. Maximizing social welfare is a common solution goal, especially when the objective 

of the agents is altruistic. However, selfish or self-interested agents seek to maximize personal 

gain. This leads to the third activity in solving cooperative games, dividing the payoff. 

Distribution payoffs are often the basis of the solution concepts for cooperative games.  

2.2.2 SOLUTION CONCEPTS 

The characteristic function game defines the value of the coalition v(C) and implies the 

possible outcomes of the game (CS, X) but does not define how the payoff vector X will be 

distributed among the agents. Two of the most common ideas for evaluating the distribution of 

the payoff are fairness and stability [5]. These concepts reflect agents’ desire to remain in a 

coalition based on their payoff. 

Fairness is defined as the level to which an agent’s payoff reflects its contribution to the 

coalition. The logic follows that an agent will participate in a coalition that provides a fair share 

of the payoff. There are numerous recommendations for the division of a payoff vector amongst 

its members. Shapley [59] provides a method of dividing a coalition’s payoff based on the 

agents’ marginal contribution. The Banzhaf index [60] likewise employs the concept of marginal 

contribution but calculates it over only the coalitions of the game [5]. Brown and Frendreis [61] 

show that distributions based on proportionality are common – bigger agents receive larger 

portions. Crott, Freiburg and Albers [62] examine an equal share structure. One of the general 

assumptions of these distributions is that the payoff can be subdivided in any manner deemed 

appropriate by the agents or the game.  

Stability reflects the incentive that an agent has to remain in a given coalition [5]. Stable 

outcomes are those in which agents have no incentive to leave their current coalition to form a 

new one. Several measures of stability outcomes exist; two of the most common are the core [6] 
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and the Nash equilibrium [63]. The equilibrium point of a cooperative game is the set of mixed 

strategies such that each agent maximizes his payoff if the strategies of all other agents are held 

constant. Nash notes that every finite game has an equilibrium point, but is not always solvable.  

Examples of stability solutions are the nucleolus, the kernel, the bargaining set and the 

core. The nucleolus finds a coalition that minimizes dissatisfaction. That is, it selects the 

coalition based on “the difference between what the agents can get by themselves and what they 

actually get” [46]. The kernel is an equilibrium set in which no agent can reasonably expect a 

portion of another agent’s payoff to form a new coalition [5]. The bargaining set examines 

objections and counter-objections to coalitions. That is, an agent (i) can object to the inclusion of 

another agent in the coalition (j) if all members of the coalition improve their reward without 

agent j. Agent (j) can counter if there exists a coalition with an agent (j) and without agent (i) 

such that the rewards are better for all members. If a counter-coalition does not exist, the original 

objection is said to be justified. The bargaining set is the set of all coalition structures in which 

no agents have a justified objection to anyone else in the coalition [46]. 

The core, originally defined by Gilles [6], is the oldest and the most widely used 

referenced solution set. The core of a game is based on dominance. Dominance occurs when, for 

a agent i, the payoff i receives in coalition  𝐶𝑎
𝑖  is strictly better than the payoff i receives in 

coalition 𝐶𝑏
𝑖  for all agents in the coalition2  [46]. The core is the set of all coalition structures for 

which the payoffs of the coalitions cannot be dominated [46]. Chalkiadakis et al. [5] formally 

define the core as follows: “The core C(G) of a characteristic function game G = (N,v) is the set 

of all outcomes (CS, x) such that 𝑥(𝐶) ≥ 𝑣(𝐶) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝐶 ⊆ 𝑁.” Core sets are stable in that 

there is no incentive based on payoffs for any agent to form a new coalition. The core, however, 

 
2 𝐶𝑥

𝑖  represents a coalition Cx that contains member i. 
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presents numerous challenges. While it is mathematically simple, finding the core is 

computationally complex. Additionally, the core is not guaranteed to exist; in some instances of 

games, the core is empty.  

Fair and stable coalitions tend to endure long enough to accomplish the desired goals. 

While there are numerous ways to define fair and stable, for this research, I focus on the core.  

2.2.3 DETERMINING THE CORE 

Determining the core in these games is computational complex. The number of possible 

coalition structures for as few as 20 agents is over 51 trillion3 [29]. The naïve approach to 

determining the core tests each coalition containing agent i against the portion of the coalition 

within coalition structure containing i, 𝐶𝑆𝑖, to determine if there exist a coalition, C, in which 

every 𝑖 ∈ 𝐶 has a strictly improved utility. Existence of such a coalition means that the coalition 

structure is dominated and therefore not a part of the core. This method is computationally 

intensive and cannot be used for large numbers of agents. For example, if there were 10 agents, 

there would be 115,975 coalition structures and 1,023 coalitions requiring approximately 

593,212,125 comparisons4 to determine the core. With 20 agents the number of comparisons is 

in excess of 542 𝑥 1018.  

The utility may be a function of the payoff or may be the preference for membership in 

the coalition. Cooperative games in which membership preference is the agent’s utility are called 

hedonic games.  

 
3 With 20 agents there are 51,724,158,235,372 possible coalition structure. 
4 Each agent appears in half of the coalitions: 10 x 512 = 5120 comparisons for each coalition structure (512 x  
115,975 = 593,212,125. 
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2.2.4 CORE OF HEDONIC GAMES 

Hedonic games, as mentioned previously, are those games in which the utility or 

coalition value is dependent only upon membership in the coalition. Determining the core is NP-

complete [7]; determining core membership of a coalition structure in a hedonic game is co-NP 

complete [13]. The nature of hedonic games is such that any other game can be broken down and 

represented by a series of hedonic games [5]. 

The outcome of a hedonic game is a coalition structure; that is, each agent exists in exactly 

one coalition. A coalition may be a group of agents or a single agent. These games are identified 

by the preference relation that agents have for one coalition over another. The relationship is 

denoted as 𝑎 ≻ 𝑏 – the agent strictly prefers a to b – or 𝑎 ≿ 𝑏 – the agent prefers a at least as 

much as b. The preference relationship on a set of outcomes Λ is defined with the following 

binary relation: ≿ ⊆ 𝛬 𝑥 𝛬. These properties can be defined as follows: (1) completeness, (2) 

reflexivity, (3) transitivity [5].  

1. Completeness:  for every pair in the set, the preference for one element is greater than or 

equal to the other. 

∀{𝜆, 𝜆′}  ⊆  𝛬, 𝜆 ≿ 𝜆′𝑜𝑟 𝜆′ ≿ 𝜆 

2. Reflexivity:  the preference for every element is greater than or equal to itself. 

∀𝜆 ∈ Λ, 𝜆 ≿ 𝜆 

3. Transitivity: for every triplet of elements, if the preference for the first element is greater 

than or equal to the preference for the second element and the preference for the second 

element is greater than or equal to the third element, then the preference for the first 

element is greater than or equal to the third element. 

∀{𝜆1, 𝜆2, 𝜆3} ⊆ 𝛬, 𝑖𝑓 𝜆1 ≿ 𝜆2 𝑎𝑛𝑑 𝜆2 ≿ 𝜆3, 𝑡ℎ𝑒𝑛 𝜆1 ≿ 𝜆3 
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 Hedonic games are the complete, transitive, and reflexive preference relationship over 

coalitions contain i and are denoted as follows: 

1. 𝐺 = (𝑁, ≿1, … , ≿𝑛) 

2. 𝑁 =  {1, … 𝑛} 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑎𝑔𝑒𝑛𝑡𝑠 

3. ∀𝑖 ∈ 𝑁, ≿𝑖⊆ 𝑁𝑖𝑥𝑁𝑖   

The outcome of the game is (CS, x) where CS is the coalition structure and x is the preference 

utility vector. 

Agents join coalitions to improve the value that can be achieved  [11]. The agents in a 

hedonic game are assumed to be self-interested and individually rational; they will seek to 

change coalitions if their preference utility is improved. These games do not lend themselves to 

the social welfare maximization solutions; rather, core solutions are those with coalitions that 

cannot be dominated. Dominance occurs when the payoff of one coalition is better than the 

payoff of another coalition for every member of the coalition. Agents in a dominate coalition 

have no incentive to change to any other coalition. A coalition structure (CS) is blocked if there 

exist some coalition (C) that dominates the coalition structure for all agents in the coalition. That 

is, “𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛 𝐶 ⊆ 𝑁 𝑏𝑙𝑜𝑐𝑘𝑠 𝐶𝑆 𝑖𝑓 𝐶 ≻𝑖  𝐶𝑆𝑖  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐶" [5]5. The set of CS that are not 

blocked in a hedonic game is the core. 

The core of a hedonic game is individually rational and contractually individually stable. 

Individually rational implies that no agent will join a coalition that does not provide at least a 

payoff equal to what it receives on its own. Contractual individual stability exists when no agent 

can move to a coalition that improves the payoff for all agents in both the coalition from which 

the agent departed and the coalition to which the agent joined [5].  

 
5 𝐶𝑆𝑖 refers to each coalition C in coalition structure CS that contains agent i 
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As mentioned, finding the core if it exists, is an NP-complete problem. Researchers have 

attempted to use various heuristics and multi-paradigm models to approximate a solution. In the 

next section, I review hybrid modeling and the combination of ABM and CGT. 

2.3 HYBRID MODELING 

 “A hybrid is the result of merging two or more components of different categories to 

generate something new, that combines the characteristics of these components into something 

more useful” [64]. Hybrid modeling is the combined application of simulation with other 

disciplines such as engineering, applied computing, and operations rsearch [65]. In this section, I 

review hybrid models that combine ABM and CGT. Combining applications aids in increasing 

the benefits or overcoming weaknesses of both applications [66]. I explore how hybrid models of 

ABM and CGT have been used to aid coalition formation studies and evaluate any gaps in the 

literature. 

2.3.1 ABM AND COOPERATIVE GAME THEORY HYBRID MODELS 

Bonnevay et al. [16] attempt to advance the study by addressing the static nature of game 

theory. They combine game theory and ABM to study dynamic coalition formation. Their 

objective is to understand the rationality that leads to an equilibrium game. Assumptions made in 

their model provide the agent with attributes and logic used to determine when to make a 

proposition for a coalition and whether to accept a proposition. The model is useful to understand 

agent characteristics that result in coalition formation under certain conditions. However, it 

strays from the strictest ideals of game theory and is not as generalizable. 

Szilagyi [67] create an Agent-based model to simulate the El Farol Bar Problem [68] as 

an iterated cooperative game. The Bar Problem consists of several individuals independently 

determining whether to attend a bar on a given night. The parameters for the decision include the 
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bar’s capacity and the individual’s belief of how many others will be in attendance. The reward 

(or utility) is based on attending when the bar is not overcrowded and not attending when the bar 

is overcrowded. Szilagyi’s model treats the coalition structure as an iterative two-person game 

with individuals selecting strategies based on biases and history; the agent is agent 1, and 

everyone else is agent 2. Each agent has a probability of cooperating (i.e., attending the bar) or 

defecting (remaining at home). Probabilities are updated based on rewards/penalties from prior 

action, neighbors’ actions, and agent personality. The simulation is run until stability, or a 

definitive pattern is achieved. While the model provides insight into self-referential expectations 

and possibly simple financial market models, it does not address key cooperative game concepts 

of fairness or stability inherent in coalition formation. The coalition is not the focus of the model. 

Collins [69] also uses an ABM to examine the Bar Problem. His emphasis, however, is 

more on the strategic group formation aspect with the model addressing agents forming and 

deciding to cooperate (attend) as a coalition. He incorporates routines of group mergers, group 

splits, and individual defection. This provides a framework for comparing the value of the 

collective decision versus the individual. The limit of this approach to strategic group formation 

is the lack of ability to determine whether the coalition structures formed aligned with any of the 

known solution groups of cooperative game theory (e.g., the core). 

Collins and Frydenlund [15] use a hybrid Agent-based/cooperative game theory model to 

explore group formation during refugee migrations. Refugees form groups dynamically that 

provide safety and assistance to their efforts and leave groups that progress too slowly for their 

satisfaction. The model incorporates human movement models with strategic group formation. 

Their approach functionalizes determining core stability of a coalition structure focusing on the 



22 
 

agent’s decision to remain with a group or leave based on their utility as a member of the group.  

Their example translates utility into the strength of pooled resources.  

Each of these combination models successfully demonstrate the use of hybrid models. 

However, they do not adequately address the argument that simulation is not backed by the 

underlying theory because they do not validate their models against theoretical results.  

2.4 LITERATURE GAP 

Cooperative game theory presents a reasonable structured manner to study coalition 

formation; however, its usage is limited because the computational requirement grows 

exponentially with the number of agents. Various attempts to minimize the computational 

complexity in algorithmic solutions are limited to solving cooperative games for maximizing 

social welfare. However, the do not address the most widely used solution set, the core. Finding 

the core of a hedonic game is NP-complete. Agent-based models have been used to attempt to 

approximate a cooperative game solution. They are designed for handling interactions of large 

numbers of agents and the resulting non-linear dynamics but have limited focus on the strategic 

component. While there are several coalition formation ABMs based on cooperative game 

theory, they are not validated against game theoretic results. The research gap in the literature 

demonstrates the need to develop a heuristic that produces results comparable to those found 

through analytic means that is less computationally intensive and is flexible enough to be useful 

in multiple applications. 

This research intends to demonstrate the effectiveness of the existing algorithms in 

finding a coalition structure that is a member of the core and provide an alternative that is more 

effective and efficient. The benefit of this work is to provide researchers with an embeddable 

ABM algorithm to explore rational coalition structures of larger groups. 
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2.5 SUMMARY 

In this chapter I provided a brief overview of ABM and its flexibility with respect to 

coalitions and collective interactions. I discussed the basics of cooperative games and 

cooperative game theory including the three primary types of games: TU games, NTU games, 

and hedonic games. I noted that a series of hedonic games can be used to represent any of the 

other types of games. I described the primary steps for solving cooperative games and reviewed 

some of the common solution concepts including the core and the computational challenges 

associated with solving cooperative games. After describing cooperative games and the solution 

challenges, I defined hybrid modeling and showed the use of Agent-based/cooperative game 

theory hybrid models. Finally, I discussed what I believe is currently a gap in the literature. 

Cooperative game theory presents a reasonable structured manner to study coalition 

formation; however, its usage is limited because of the computational expansion that occurs as 

the number of agents increases. The three main functions of solving cooperative games: coalition 

structure generation, coalition value determination and optimization, and dividing the payoff; 

requires intensive computing resources. Researchers have found success in solving for larger 

numbers with less computational requirements when maximizing social welfare. However, there 

has been less success when selfish agents and alternate solution sets are considered.  

The most common solution set is the core. The core is the set of coalition structures 

whose coalitions cannot be dominated by any other coalition. Finding the core of a hedonic game 

is NP-complete. Agent-based models have been used to attempt to approximate a cooperative 

game solution. They are designed for handling interactions of large numbers of agents and the 

resulting non-linear dynamics but have limited focus on comparisons to the underlying theory. 

While there are several coalition formation ABMs based on cooperative game theory, they are 
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not validated against game theoretic results. The research gap in the literature demonstrates the 

need to develop a heuristic that produces results comparable to those found through analytic 

means that is less computationally intensive and can be validated through empirical comparisons 

to cooperative game theory. 

The next chapter discusses the research method I use to create and validate the ABCG 

model which provides a direct translation of core of cooperative games. 
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3.0 RESEARCH METHOD 

This section provides the rationale and outlines the steps of the quantitative research 

approach used in this dissertation. The objective of this section and more broadly the research is 

to evaluate clearly and concisely the effectiveness of the Agent-based Cooperative Game 

(ABCG) model in finding a core member for a cooperative game. I use a quantitative method to 

measure my results. “Quantitative research encompasses a range of methods concerned with the 

systematic investigation of social phenomena, using statistical or numerical data” [70]. In this 

case, the phenomenon is the ability to determine a member of  a stable coalition formation as 

defined by Gillies as the core [6].  

My research method consists of four major components. The first major component is 

generating the hedonic cooperative games. The hedonic cooperative game is defined by the 

following structure 𝐺 = (𝑁, ≿1. …  ≿𝑛), where 𝑁 =  {1, … , 𝑛} is the set of agents in the game. 

The preference relationship “≿𝑖” denotes the preference that agent “i” has for a given coalition 

with respect to all other coalitions which contain that agent. The second component is solving the 

game for the core. I solve for the core by generating all possible coalition structures (CS) and 

eliminating any coalition structure (CS), that are blocked. “A coalition 𝐶 ⊆

𝑁 𝑏𝑙𝑜𝑐𝑘𝑠 𝐶𝑆 𝑖𝑓 𝐶 ≻𝑖  𝐶𝑆𝑖   for all 𝑖 ∈ 𝐶 [5].” The third component is finding a core member of 

the hedonic cooperative games using the ABCG model. The final component is the validation of 

the model through statistical measures. Figure 2 graphically depicts the high-level steps of my 

research method. 
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Figure 2: Dissertation Research Method 

I then create a C++ program6 to generate hedonic games and solve them for the core. 

Details of the program are described in the next section. The program is effective but not 

efficient in finding the core solution of a cooperative game. It employs a naïve or “brute-force” 

algorithm that checks every coalition structure against each coalition to determine if a coalition 

structure is blocked or a member of the core solution. Solving for the core of a hedonic game is 

NP-complete [7]. Computationally, it is infeasible to use this naïve algorithm for games 

consisting of large numbers of agents (approximately 17 [29]). The maximum number of agents I 

solve for in my program is 15 to allow for execution in a reasonable time frame. I estimate the 

limit in C++ for this program to be 27 agents since the maximum theoretical size of a 2-

dimensional array in C++ is 4GB or 232. However, the practical execution with the memory 

drain will most likely be less. 

 
6 The first attempt at executing the naïve algorithm was done in Python 3.7. Python was unable to execute for 
greater than 12 agents. 
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Next, I create a model that is a hybrid of ABMS and cooperative game theory (CGT), my 

ABCG model.  The model attempts to find a core member for each of the games created and 

previously solved in the C++ program. As previously mentioned, ABMS is a bottom-up type 

paradigm that examines individual interactions without centralized coordination. Agents within 

the coalitions, at different times, can change coalitions by leaving a coalition, joining with 

another agent or agents to form a new coalition, joining two coalitions together, splitting a 

coalition apart, or removing individual agents from a coalition. New coalitions formed by the 

interactions that prove to be advantageous for all members of the coalition, that is every member 

of the coalition improves their position or individual value in the new coalition, remain; 

otherwise, members return to the original coalition. 

I perform various experiments through simulation once the model is completed. The 

initial conditions of the model are the array of values assigned to the coalitions determined when 

the games were created and the initial coalition structure. There are a series of four sets of 

experiments. The first set of experiments provides for the comparison of my ABCG model to the 

existing Collins-Frydenlund model. The objective is to determine if my model performs at least 

as well as the current state in the literature. The second set of experiments are designed to 

determine the accuracy with which the model can reach find a coalition structure that is a 

member of the core solution. The third set of experiments examines the effect of the initial 

coalition structure on finding a coalition structure that is a core member. The fourth allows me to 

demonstrate the effectiveness of the model in a known research use case – the glove game. Each 

set of experiments is designed to validate my ABCG model. 

With the structure of these experiments, I have addressed for my model a common 

criticism of Agent-based models. Agent-based models have been criticized for lacking empirical 
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validation [71]. I validate the ABCG model using several methods including empirical 

validation. With the first experiment, I validate both through model comparison and empirical 

testing. The original model and my ABCG model are tested against a known result to determine 

the frequency with which each model is able to reach the desired state. The second experiment 

expands the data used in the model and is again validated using a statistical comparison of the 

model result to a known result. The third experiment allows me to perform a sensitivity analysis 

to help me understand the brittleness of the model with respect to the initial coalition structure. 

The fourth, although empirically validated, is designed to show the model’s usefulness in a 

common research problem. The problem is defined as the glove game. It is a simple market 

problem based on the assignment game of Shapley and Shubek [72]. These experiments provide 

for different subject matter expert (SME) face validations. 

The remainder of the chapter is formatted into the four major sections. The next section 

will describe the creation of the hedonic games that are the basis for my experimentation. This 

will include the description of the naïve algorithm used to solve the hedonic games. That section 

is followed by a section describing my ABCG model. Section three contains the details of each 

of the experiments and the specifics of each of the validation technique. These major 

components were combined to provide a more comprehensive view of how the experiment and 

the validation technique are connected. Section four closes the chapter with a summary of the 

research method used in this dissertation. 

3.1 CREATING HEDONIC GAMES 

Drèze and Greenberg [8] coined the phrase “hedonic coalitions” to refer to the personal 

preference that people have for belonging to certain groups or coalitions. Hedonic games are 

cooperative games in which agents have preferences over the coalitions that they can join [3]. 
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The value an agent has for a given coalition in a cooperative game represents that agent’s 

preference for belonging to that coalition with respect to all other possible coalitions in the game. 

This represents the value designation step in the coalition formation problem. Hedonic games 

belong to the class of non-transferable utility games but are most interesting because any 

cooperative game can be represented by hedonic games [3]. The preference for a coalition can be 

random, relational, or based on the division of resources among coalition members. This ability 

to designate a preference based on almost any criteria provides us the ability to represent any 

cooperative game as a hedonic game. 

For experiments two and three, I utilize strict hedonic games without the loss of 

generality. Strict hedonic games are noted as 𝐺 = (𝑁, ≻1, … , ≻𝑛), where 𝑁 = {1, … , 𝑛] is the set 

of all agents. For each agent, 𝑖 ∈ (𝑁, 𝐶1, 𝐶2), the notation 𝐶1 ≻𝑖 𝐶2 indicates that agent i prefers 

coalition 𝐶1 over 𝐶2. Agents in these games must prefer one coalition over another; indifference 

or ties between coalitions is not permitted. Agents appear in exactly half of the possible 

coalitions; the total number of coalitions is 2𝑁, where N is the total number of agents in the 

game. Agents’ preferences are randomly ordered and assigned a value based on position in the 

ordering. I build an array of coalition values for each agent in every possible coalition. For 

example, in a three-agent game – agents a, b, and c – there are eight possible coalitions. Each 

agent appears in four unique coalitions. Table 2, shown below, is an example of one possible 

coalition value array.  
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Table 2: Strict hedonic coalition value array 

Possible Agents' Preferences 

Coalitions a b c 

( a ) 2     

( b )   4   

( c )     2 

(a, b) 4 2   

(a, c) 1   4 

(b, c)   1 3 

(a, b, c) 3 3 1 

 

I use a hashing algorithm to randomly assign coalition values. A random number between 

1 and ½ the number of possible coalitions, (
2𝑁

2
) 𝑜𝑟 2𝑁−1 is generated. The algorithm checks to 

see if that number has already been assigned. If it has, the random number is incremented by 1. If 

the new number is within range (i.e., less than 2𝑁−1), the new value is checked; otherwise, the 

random number is set to 1. This continues until an available value is found. Once an unassigned 

number is found, the number is assigned to the coalition value array and is marked as assigned. 

This process continues until each position in the coalition array is filled. To determine coalitions 

to which the agent belongs, the algorithm takes advantage of a property of the binary version of 

the numbers. A “1” in the agent’s position of the binary number of the coalition indicates that the 

agent is a member of the coalition. It is simple and efficient; however, several other techniques, 

for example sorting algorithms or simple randomization of the numbers, could be employed with 

equal or greater efficiency.  

The pseudocode for this algorithm is shown in Figure 3. The program is written in C++ 

using Visual Studio 2017. The random number generator used is Mersenne Twister [73], a 

common general purpose pseudo-random number generator that should not repeat during the 

execution time of our model. 
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Figure 3: Hashing algorithm for assigning coalition values 

 Once the coalition value array has been created, I attempt to solve for the core. I use a 

naïve or brute-force method for solving the hedonic game. This method entails checking every 

possible condition. The next section describes the algorithm and code used to find the core of the 

hedonic games created. 

3.2 NAÏVE ALGORITHM 

Gillies [6] defines the core as the set of coalition structures in which no agent has the 

incentive to deviate from one subset to another. The core, as defined by Chalkiadakis et al. [5], is 

the set of all outcomes (𝐶𝑆, 𝑥) such that 𝑥(𝐶) ≥ 𝑣(𝐶) for every 𝐶 ⊆ 𝑁 where 𝑥(𝐶) represents 

the value of the current coalition for agent x and 𝑣(𝐶) represents the value for the agent in other 

possible coalitions. If there exists a coalition, 𝐶 ⊆ 𝑁, for which the value an agent receives in 

that coalition is an improvement over the value it receives in its current structure, that current 

structure is deemed to be “blocked”. The core solution is the compilation of all coalition 
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structures which are not blocked. Figure 4 shows the pseudocode for realizing these comparisons 

to determine blocked coalition structures. 

  

Figure 4: Algorithm for determining blocked coalition structures 

 

The naïve or brute force algorithm approach [74] generates every partition and checks it 

against every coalition to determine if it is blocked. This method, while complete, is not elegant. 

The first step is to determine every possible coalition structure that exists for a given game. This 

task alone requires significant computations; the number of possible coalition structures for n = 

20 agents exceeds 51 trillion [29]. This is followed by a comparison of every coalition to the 

coalition structure. The number of potential coalitions that can be formed are 2n-1. Finally, a list 

of all partitions that have not been blocked is created [75]. This list of non-blocked partitions is 
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the core. Maximizing social welfare, that is determining the greatest overall coalition value, has a 

complexity of 𝑂(𝑁𝑁) [29]; solving for the core increases this complexity to a level that makes 

the problem NP-complete. This limits the size of the cooperative game that I can reasonably 

solve. Rahwan et al. [29] solve for the social maximum and have managed to successfully 

compute games with 21 agents. Collins et al. [75] solve the core for a maximum of 13 agents. In 

line with the current literature, I solve the cooperative games for a maximum of 15 agents. 

As mentioned, there are two main functions of the naïve algorithm employed: the 

creation of every coalition possible structure and the determination of which coalition structures 

are part of the core. The first function is a set partition problem. To solve this, I employ a method 

introduced by Djokić, Miyakawa, Sekiguchi, Semba and Stojmenović [76] known as setpart. The 

algorithm is shown in Figure 5 below. This method is functional but not necessarily the most 

elegant [75]. Expanding on the setpart algorithm would require further research into 

combinatorial set problems which is outside the scope of this work. 

 

Figure 5:  Setpart algorithm from Djokić et al. [10] 

This algorithm generates a complete list of every possible coalition structure for a given 

number of agents. I iterate through this list as I compare the various coalition values to determine 
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which coalition structures are blocked and which are not. This comparison is the second part of 

the program – the function to determine if a coalition structure is part of the core. The naïve 

algorithm systematically checks this condition for every possible coalition structure. Collins et 

al. [75] describe this function in the process diagram shown in Figure 6. The “Coalition 

Structures” box represents the input from the previous step. The coalition value array created in 

the game generation step contains the values for the “Coalition(S)” box and the values for the 

coalitions within the coalition structures. 

 

Figure 6: Process diagram of naive algorithm for determining the core of a random hedonic game [9] 

 

The diagram shows the process of nested checks with the outer loop iterating over all 

possible coalition structures while the inner loop tests against all possible coalitions. Each pass 

determines whether a coalition structure is blocked. All blocked coalition structures are removed 

from the set; the coalition structures that remain at the end of all iterations is the core set. The 

algorithm is complete but probably not the most efficient.  

Using the example shown previous of the coalition value array, Table 3 is an example of 

a 3-agent hedonic game with the core solution. I start with the coalition value array defined in the 



35 
 

creation of the hedonic game. Each possible coalition structure is listed and the values for each 

agent in the coalition structure is detailed in the Agents’ Values matrix. Agent “b” in this 

example will always prefer to be in a coalition by itself (coalition value = 4). Therefore, the only 

coalition structures that are not blocked due to “b” are [(a) (b) (c)] and [(a,c) (b)]. Agent “a” 

prefers to be in a single coalition (coalition value = 2) rather than a coalition with Agent “c” 

(coalition value = 1). Therefore, coalition structure [(a,c) (b)] is blocked. The only coalition 

structure not blocked is [(a) (b) (c)]. 

Table 3: Example of 3-agent hedonic game 

 

My algorithm is a variation on this as it takes into account individual rationality coalition 

lists (IRCL) [7]. IRCL states that any coalition that provides an agent with less value than their 

singleton coalition, i.e., a coalition that contains only that agent can be ignored. I incorporate this 

into my algorithm using a pre-processing step that determines and marks coalitions that can be 

ignored during the iteration. While this increases the efficiency of the algorithm, there are still 

other techniques that could have potentially provided additional improvements. Further pre-

processing beyond IRCL could be performed to eliminate the need to iterate other coalitions. 

Distributed processing rather than the current sequential looping could also have improved 

efficiency. However, I choose to simplify my efforts in creating the naïve algorithm. Additional 

pre-processing and distributed processing would increase the difficulty in assuring a verified 

solution. Further, the optimal efficiency of the naïve algorithm is outside the scope of this work. 

Possible Possible

Coalitions a b c Coalition

( a ) 2 Structures a b c

( b ) 4 [(a) (b) (c)] 2 4 2 Core Solution Set

( c ) 2 [(a,b) (c)] 4 2 2 [(a) (b) (c)]

(a, b) 4 2 [(a,c) (b)] 1 4 4

(a, c) 1 4 [(b,c) (a)] 2 1 3

(b, c) 1 3 [(a,b,c)] 3 3 1

(a, b, c) 3 3 1

Agents' Values

Agents' Preferences
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 My algorithm is implemented in Microsoft Visual Studio 2017 C++. The original work 

utilized Python 3.7 and Jupiter Notebook for solving the cooperative games with a naïve 

algorithm. Unfortunately, Python could not complete execution beyond 12 agents. Beyond 12 

agents, the memory and space requirements for the comparison caused an error and an abnormal 

exit of the program. C++ allows for greater flexibility with memory and CPU usage. However, 

as shown later, the execution time required becomes extensive. The full code for the hedonic 

game creation and core solution is given in the Appendix.  

3.3 ABCG MODEL 

As seen in the literature review, there are several models that have combined ABMS and 

Cooperative Game Theory. However, very few provide a true representation of the core solution, 

and none have provided an empirical validation against the core. My objective is to create a 

hybrid heuristic model that provides a reasonable means for finding a core stable coalition 

structure. I determine that it is reasonable by empirically validating the solution against a known 

core solution. 

I choose to start by using an existing algorithm. I feel that the model which most closely 

represents the cooperative game theory core solution is produced by Collins and Frydenlund 

[37]. The algorithm is clear and concise in its development of interaction routines. They describe 

10 steps which are performed iteratively: 

1. Select a random agent. 

2. Randomly determine a new subgroup containing selected agent and determine the 

value of the subgroup as if it was independent of its group. 

3. If the subgroup value is greater than the current group value, then subgroup detaches 

from the main group and move to step 9. 

4. Determine the value of the group without the selected agent. 

5. If group value is higher without the selected agent, kick selected agent out of the 

group and move to step 9.  
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6. Select another random local group (Moore neighborhood of a group agent). 

Determine if the selected agent’s group benefits from merging with this random local 

group. 

7. Determine if the random local group benefits from joining the selected agent’s group. 

8. If both benefit, group merge. 

9. Randomly select a previously unselected agent and repeat from Step 2 

10. If all agents have been selected, move to the next time step. 

While the algorithm expresses dominance in terms of checking for the greater coalition 

value, it ignores individual rationality that is central to the core solution. I believe this creates a 

significant difference that would be demonstrated if the model were to be empirically validated 

against the core solution. I use this model as a starting point and improve upon it to more closely 

align my solution with core membership. I incorporate individual rationality into the model and 

ensure that I do not violate the properties of reflexivity and transitivity that are inherent in 

hedonic games. I believe these changes improve on the ability to find a core stable solution. 

The ABCG heuristic model is designed to explore different coalition formations within a 

coalition structure. It is similar to the Collins and Frydenlund [37] in its efforts to find a core 

member through subset formation. Each new coalition formed is compared to the previous 

coalition to determine if all agents have a greater preference for the new coalition. My ABCG 

model incorporates the work of Collins-Frydenlund but improves on their model. Table 4 

outlines the interaction differences. The ABCG model directly incorporates individual rationality 

and adds routines that create smaller coalitions to review the solution space more completely. 
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Table 4: Comparison of model interaction methods between the CF model and the ABCG model 

MODEL INTERACTION COMPARISON 

Collins-Frydenlund (CF) model  ABCG model 

Creating new coalitions 

Randomly select 2 coalitions to merge  Randomly pair agents to form coalition 
Randomly select agents to form a new 

coalition  

Randomly combine 3 or more agents to form 

coalition 

   Randomly select 2 coalitions to merge 

   Randomly select agent to joining different coalition 

     

Dividing Coalitions 

Randomly split a coalition into two  Randomly split a coalition into two 

Randomly remove an agent from a coalition  Randomly remove an agent from a coalition 

     

Individual Rationality 

    Determine if agent is better off along 

 

One of the main oversights of many of the Agent-based models that attempts to 

incorporate cooperative game theory is that selfish agents will not accept any coalition that does 

not provide them at least as great a utility as they have on their own. This is a primary 

consideration for determining the core of a hedonic game. To address this, I added a method that 

specifically checks for individual rationality. My algorithm also expands upon that approach by 

utilizing multiple methods of subgroup formation and verifying improvements at the individual 

agent level. Specifically, I utilize seven interaction routines to represent potential was coalitions 

can form. The interaction routines consist of uniting functions and separation functions. These 

provide the heuristic means for potentially forming new coalitions. Each agent’s coalition value 

is checked with every new coalition to ensure that every agent in the new coalition improves 

their position by adopting the new coalition. 

The uniting functions – merge coalitions, pair coalitions, and trio coalitions – are 

techniques used to form new coalitions by bringing together two or more agents. The merge 

coalitions routine randomly selects two existing coalitions to create a single coalition. If every 
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agent in the merged coalition improves their coalition value as a result of the merger, the new 

coalition is formed as part of the coalition structure. Pair coalitions randomly select two agents to 

form a new coalition. If both agents improve their coalition values by forming the new coalition, 

they depart from their existing coalitions and accept the new coalition as part of the coalition 

structure regardless of the impact on the remaining members of the old coalition. The trio 

coalition is like the pair coalition with three agents selected rather than two. The trio coalition is 

introduced to alleviate the local maximum potential. The algorithm used for my model belongs 

to a group known as “greedy algorithms.” These algorithms are based on achieving locally 

optimal decisions with the hope of a global solution. The global solution is not actually 

represented or considered. Therefore, it is possible for a coalition to reach a value in which it is 

unwilling to reconsider given the rules for a change. That is, the game stalls at a local maximum. 

Early tests indicated that this occurred most often at the paired coalition level and that an 

additional rule could aid in preventing this condition.  

There is also the potential for creating a larger coalition that is less than optimal. To 

minimize this problem, I have two the separation functions – exit coalition and split coalition. 

The exit coalition routine randomly selects an agent of the coalition to be removed from the 

coalition. If the removal of the agent improves the coalition values of all remaining agents, the 

agent is removed from the coalition and placed in a singleton coalition, that is, a coalition 

containing only the one agent. The split coalition function randomly divides the coalition into 

two coalitions.  If in either coalition all agents have a higher coalition value than in the previous 

combined coalition, the coalitions are split into two.  

The final two interaction routines focus on individual agent movement. The first, defect 

coalition routine, randomly selects an agent to leave their current coalition and join and new 
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coalition. If the agent and all members of the new coalition improve their coalition value, the 

agent defects or leaves the existing coalition. The individual coalition ensures that all agents are 

individually rational. It checks each agent’s current coalition value against their singleton 

coalition value. If the agent receives a higher coalition value being on its own, it leaves the 

current coalition. Table 5 shows a synopsis of each of the routines. 

Table 5: ABCG Routine Synopsis 

Routine Name 

Routine 

Type Description Acceptance Criteria 

Merge Coalitions Uniting 

Join two randomly selected 

separate coalitions All agents improve 

Pair Coalitions Uniting 

Join two randomly selected 

agents 

Agents of the new paired 

coalition improve 

Trio Coalitions Uniting 

Join three randomly selected 

agents 

Agents of the new trio 

coalition improve 

Exit Coalition Separating 

Remove a randomly selected 

agent from coalition 

Agents remaining in the 

coalition improve 

Split Coalition Separating Divide coalition into two 

All agents of either new 

coalition improve 

Defect Coalition Both 

Randomly select an agent to 

leave coalition to join 

another 

All agents of the "defected 

to" coalition improve 

Individual 

Coalition Separating 

Become singleton coalition 

to satisfy individual 

rationality Individual agent improves 

 

The selection of agents and coalitions is done using a Monte Carlo method. The Monte 

Carlo method, introduced by Metropolis and Ulam [77], is “a numerical method for solving 

mathematical problems by simulation of random variables [78].” In my hybrid model, agents are 

randomly selected to interact with other agents or coalitions. This stochastic aspect relies on a 

sampling of the potential solution space rather than the exhaustive comparisons demonstrated in 

the naïve algorithm. The advantage of this method is that it is significantly less computationally 

intensive, it always provides a solution set, and it is flexible in the number of iterations 
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performed. The downside is that the solution is not guaranteed to be accurate – that is, the 

solution might not be a member of the core; this will always be the case if the core is empty – 

and the model produces only a single core member whereas the core set might contain several 

members.  

The next major modification is the structural component. Solving hedonic games for the 

core is computation intensive even using a heuristic to approximate the value. My model gains 

efficiencies using two structural mechanisms. First, the coalition values are calculated prior to 

the first run and the model stores the set of coalition values in a matrix of size 2𝑁𝑥 𝑁.  This 

ensures that they only need to be calculated once. The coalition index number is derived from the 

agents in the coalition. An agent existing in a coalition is a binary function: 0 if they are not in 

the coalition; 1 if they are in the coalition. This binary string of agent membership in a coalition 

is converted to a decimal and is used as the index for the coalition value matrix. This use of 

binary properties allows the model to rapidly identify coalition values based on membership. 

Specifically, each coalition value is designated by the membership string and each agent is 

designated by position. This mathematical mapping reduces computational time required to 

compare the values of the new coalition to the existing coalition. It is set to derive or retrieve 

from a file the core values ensuring that the calculation of these values only occurs once. This 

part of the problem is reduced to 𝑂(2𝑁) as opposed to completing the calculation for each 

comparison.  

After each new coalition is formed, it is tested to determine if the new coalition improves 

the value for all members of the new coalition. The aim of this is to capture the functionality of 

the analytic algorithm that assesses if a coalition is blocked. If the new coalition that forms 

improves the value for all members of the coalition than the old coalition was blocked and is not 
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a member of the core. Similar to Rahwan et al. [29], each iteration is guaranteed to be at least as 

stable as the previous since coalitions that do not improve the value for the agents are rejected. 

This also means that for every game, even if there is no core solution, a relatively stable solution 

will be presented by the algorithm. That is, while it might not be a core member, the coalition 

structure is at least as stable as all other coalition structures tested. 

3.4 ODD PROTOCOL 

The implementation of my model is done in NetLogo [79]. NetLogo provides a 

simplified coding language that incorporates the ability to randomize agent selections and 

schedule routines simply. Other ABM languages such as SWARM, RePast Symphony, or Mason 

could have served equally as well. One common challenge of modeling is a standard way to 

describe the model. One method that has grown in use is the Overview, Design Concepts, and 

Detail (ODD) Protocol [80]. The ODD Protocol provides a standardized method to describe 

Agent-based models [81]. It is generally used in social science. The next section provides a 

formal description of the ABCG model using the ODD Protocol. 

3.4.1 PURPOSE AND PATTERNS 

The purpose of the model is to generate coalition structures of different hedonic games, 

using a specially designed algorithm. The coalition structures are later analyzed by comparing 

them to core partitions of the game used. Core partitions are coalition structures where no subset 

of players has an incentive to form a new coalition. The patterns of coalition structures generated 

by the simulation are expected to converge to a core partition if one exists for a given game. The 

simulation is the model implemented over time. 
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3.4.2 ENTITIES, STATES, AND VARIABLES 

The simulation model is a representation of a cooperative game theory games known as 

hedonic games. The hedonic game involves agents trying to be a part of their favored coalition. 

The focus of the game is which coalitions of agents form.  

Environment: Abstract social environment where all agents are assumed to be able to 

communicate with each other with complete information. 

State variables: All variables are associated with the players. 

Table 6: State variables of ABCG model 

Variable Type, Range Owner Temporal 

Coalition 

Membership 

Integer, [0, # agents] Agents Dynamic 

Coalition Value Integer, [0, 2𝑁−1) Agents Static  

 

Coalition Membership: It gives the index number of the coalition that the agent is a 

member. If an agent is not a member of a coalition, it is assumed to be in a singleton coalition, 

and an index number is still assigned. 

Coalition Value: This variable indicates the numbered preference an agent has for a 

coalition. Agents are members of ½ the total possible coalitions; the total number of possible 

coalitions is 2𝑁 where N is the number of agents. The preference is strictly ordered with 1 being 

the least preferred coalition and 2𝑁−1 being the most desired coalition. Note, this differs from 

several other definitions of coalition values in that it does not represent the composite of all 

members but rather the individual member values. 
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Scales: The temporal scales within the model are arbitrary. Each round represents an 

opportunity for several coalitions to be suggested to the agents and, if necessary, the updating of 

the coalition structure.  

Process overview and scheduling: The scheduling of the game is such that there are 

several rounds (simulation ticks). Each round represents an opportunity for the agents to propose 

new coalitions, and, if acceptable to all potential members of that coalition, they form a new 

coalition. The agents’ proposed coalitions are created by the algorithm. 

The main loop of the simulation is as follows: 

1. This is the algorithm subloop. The algorithm suggests seven types of coalition each turn. 

The coalition suggestions are discussed in the submodel section. At each step of this 

subloop, one of the randomly selected coalition types is suggested. First, all the 

computerized agents in the proposed coalitions are asked if they wish to join.  

o If any agent rejects the proposed coalition, then nothing changes, and the 

algorithm moves on to suggest the next type of coalition.  

o If all computerized agents agree to join the proposed coalition, then the proposed 

coalition forms and computerized agents update their membership. The algorithm 

moves on to suggest the next type of coalition 

This subloop repeats until all seven suggested coalitions have been evaluated. 

2. All agents’ internal values are updated to reflect the new coalition situation if they have 

not already been done so. This includes all agents who have lost other agents because 

those other agents are moved to another coalition. 

3. Loop to next round. 



45 
 

The critical point is that the algorithm will suggest several coalitions that are proposed to the 

agents. This algorithm is discussed in the sub-model section below. A flow diagram of the main 

loop is given below: 

 

Figure 7: Flow diagram of the main simulation process 

Design concepts 

Basic principles 

The underlying game of the model is a variation of the glove game, a classic game in cooperative 

game theory [82]. The computerized agents are assumed to be utility maximizers, which is 

consistent with game theory standards. Their utility is the sole driver for the computerized 

agent’s decision-making, and complete information is assumed. The utility value in the 

experiments is equal to the coalition value. 

Emergence 

The main expected emergent behavior is that the final coalition structure, the collection of 

disjoint coalitions covering all players, is a core partition. A core partition is a covering set of 

disjoint coalitions where no subset of agents has an incentive to form a new coalition [50, 83]. It 

is related to the core concept, introduced by Gillies [6], but, strictly speaking, is not precisely the 
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same. The core partition is an appropriate solution mechanism because it focuses on coalition 

membership instead of coalition values and imputations.  A core partition is not necessarily 

unique for a given instance of a game nor is it guaranteed to exist. I only consider games with a 

non-empty core.  

Adaptation 

The ability of an agent to accept suggested new coalitions to join is the adaptive part of the 

model. The agents are only able to change to a coalition that is suggested to them by the 

algorithm. Further, a new coalition only forms if all potential members of that suggested 

coalition choose to join that coalition. This means that every agent in a proposed coalition has 

the veto power to stop the new coalition from forming. The agents will choose to join a new 

coalition if it increases their utility. 

Note that agents might find themselves in a new coalition because other members of their 

coalition have decided to leave that agent’s coalition. Agents cannot stop other members from 

leaving; they can only stop a new coalition forming that includes them. I do not assume a 

complete collapse of the remaining coalitions into singleton coalitions as others have [82]. 

Objectives 

The objective of all the computerized agents is to join the coalition that maximizes their utility. 

The agent’s utility is quantified as a reward. In the glove game, the reward is dependent upon the 

agent’s preference. If agent ‘a’ prefers pairs of gloves, the utility for agent ‘a’ in coalition ‘S’ is: 

𝑅(𝑎, 𝑆) =
𝑚𝑖𝑛(∑ 𝐿(𝑏)𝑏 ∈𝑆 , ∑ 𝑅(𝑏)𝑏∈𝑆 )

|𝑆|⁄  

If the preference is for the number of gloves, the reward is: 

𝑅(𝑎, 𝑆) =  ∑
𝐿(𝑏) + 𝑅(𝑏)

2
𝑏 ∈𝑆

|𝑆|⁄  
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Learning 

There is no learning incorporated into this model. 

Prediction 

There is no prediction incorporated in this model. 

Sensing 

There is no agent sensing incorporated in this model for the computerized agents.  

Interaction 

All agent interactions are mediated. That is, the agents do not directly interact with each other, 

but their actions do affect each other. These effects are due to the decision that they make with 

regard to coalition membership. If an agent leaves or joins a coalition, then the make-up of that 

coalition changes, which, in turn, affects the utility or coalition value of coalition members. The 

value of a coalition is determined by the members of the coalition and is different for each agent. 

Stochasticity 

The only stochastic element of the model is the random determination of which coalitions are 

suggested by the algorithm. The algorithm generates seven different suggested coalitions during 

this step of the model; each of the seven suggested coalitions is derived by a different coalition 

formation approach. An example of a coalition formation approach would be combining two 

randomly chosen coalitions to create a suggested coalition. The different coalition approaches 

are discussed in the submodel section below.  

In all cases, the uniform distribution is used when selecting an agent or coalition. That is, all 

agents or coalitions will have the same probability of selection in a given coalition formation 

approach. 
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Collectives 

The model has a focus on coalitions, which are a form of collective. The coalitions determine the 

utility that each agent would get, and, in turn, this utility drives the computerized agent decision 

to join any proposed coalition. The coalitions are explicitly represented in the model as a 

number; each agent has a coalition number assigned to it. Note that the set containing only one 

agent is still a coalition; it is known in cooperative game theory as the singleton coalition. 

Observation 

The final coalition structure is recorded after the game has completed 100,000 time-steps. 

Initialization 

All agents are assumed to start in a grand coalition, i.e., they start in a coalition of all agents. The 

number of agents and their coalition preference is determined by which game is being 

considered. Note that an agent’s coalition preferences do not change over the course of the game. 

Input data 

All variables are determined by the initial coalition preferences and the algorithm mechanics. 

This includes the random number generator that is used for the stochastic processes, which is 

determined internally by the simulation programming platform.  

Submodels 

There are three submodels used within the model: coalition selection, coalition evaluation, and 

coalition updating. These three submodels control the changes to the coalition structure, which is 

the main output of the model.  

Coalition Selection 
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There are seven coalition suggestions (S) that are made at each round of the game. They are 

suggested in the order given below. A description in prose and mathematical notation is given for 

each. The seven suggestion types are: 

Merge coalition 

Two agents from different coalitions (U,V) in the current coalition structure (CS) are chosen 

randomly. The utilities of the merged coalitions are identified for each agent. If the utilities 

improve for all members of both coalitions, a new coalition is formed, which is the merged 

coalition. If the grand coalition (N) has formed, this suggestion is ignored. 

𝐼𝑓 𝑁 ∉ 𝐶𝑆: 𝑆 = 𝑈 ∪ 𝑉 𝑠. 𝑡. 𝑈 ≠ 𝑉, {𝑈, 𝑉}  ⊆ 𝐶𝑆 

Exit coalition 

An agent from a coalition whose size is greater than one, i.e., not a singleton coalition, is 

randomly selected. The utility of the coalition minus the agent is calculated. If all agents in the 

remaining coalition improve their utility by removing the selected agent, the agent is removed 

from the coalition and forms a singleton coalition. 

𝑖𝑓 ∃𝑈 ∈ 𝐶𝑆 𝑠. 𝑡. |𝑈| > 1: 𝑆 = 𝑈\{𝑖},   𝑖 ∈ 𝑈 

Create a pair coalition 

Two agents are randomly selected. The utility for the coalition containing just both agents is 

calculated. If the utility of both agents is improved in this new coalition, both agents exit the 

current coalition in favor of the new one. 

𝑆 = {𝑖}⋃{𝑗},   𝑖 ≠ 𝑗, {𝑖, 𝑗} ⊆ 𝑁 

Create a trio coalition 
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Three agents are randomly selected. The utility for the coalition containing just the three agents 

is calculated. If the utility of all three agents is improved in this new coalition, all three agents 

exit the current coalition in favor of the new one. 

𝑆 = {𝑖}⋃{𝑗}⋃{𝑘},   𝑖 ≠ 𝑗 ≠ 𝑘, {𝑖, 𝑗, 𝑘} ⊆ 𝑁 

Defect coalition 

A randomly chosen agent selects a coalition to which he does not belong. If joining this coalition 

improves his utility and the utilities of all members of the coalition, the agent defects from his 

current coalition and joins the new coalition. 

𝑆 =  {𝑖} ∪ 𝑈, 𝑖 ∈ 𝑁, 𝑈 ∈ 𝐶𝑆 ∪ ∅ 

Split coalition 

A coalition is randomly chosen, and a random subset of agents from the coalition are selected to 

form a separate coalition. If the members of the new coalition improve their utilities or the 

coalition that remained improve their utilities, the coalition splits into the two coalitions. 

𝑆1 = 𝑋, 𝑆2 = 𝑌, 𝑋 ∩  𝑌 = ∅, 𝑋 ∪ 𝑌 = 𝑈, 𝑈 ∈ 𝐶𝑆 

Return to an individual coalition 

An agent is randomly chosen. If that agent would be better off on their own, i.e., they prefer the 

singleton coalition to their current coalition; then, they leave their current coalition to form the 

singleton coalition. This is known as the individual rationality concept [84].  

𝑆 = {𝑖}, 𝑖 ∈ 𝑁 

Coalition Evaluation 

Each of the seven suggestions is evaluated to determine if they are acceptable to members of the 

coalition (or either coalition is the case of a split). For each effect agent, their current utility is 
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compared to the utility of the suggested coalition. If all the affected agents would experience an 

increase in utilities, then the suggested coalition forms. That is:  

𝑖𝑓 ∀𝑖 ∈ 𝑆, 𝑢𝑖(𝑆) >  𝑢𝑖(𝐶𝑖) 𝑡ℎ𝑒𝑛 𝐶𝑖 ≔ 𝑆, ∀𝑖 ∈ 𝑆 

The utility that each player gets is the preference for the coalition in which they find themselves. 

Coalition Updating 

If a new coalitions form, then the agents of that coalition simply change their Coalition 

Membership number to a unique identification number assigned to the new coalitions. The 

forming of new coalitions will affect the utilities of many of the agents, but this information is 

updated when needed. 

 Using the ODD Protocol, I have described in detail the ABCG model and its functions for 

creating and changing coalition structures. The next section describes the experimentation I use 

to examine the ABCG model and determine its validity for the purpose of finding a coalition 

structure that is a member of the core solution of the defined hedonic game. 

3.5 EXPERIMENTATION AND VALIDATION 

 “In the study of systems, the modeler focuses on three primary concerns: (1) the 

quantitative analysis of the systems; (2) the techniques for the system design, control, or use; and 

(3) the measurement or evaluation of the system performance" [85]. Experimentation with 

respect to simulation is generally the computer-based statistical sampling [86]. It represents one 

realization of the model but, due to the stochastic component, it requires multiple instances to 

perform statistical analyses on the system. Experimentation can also incorporate exploring 

differences in output performance, responses, that result from changes in input parameters and 

structural assumptions, factors [86]. In this section, I discuss the detailed steps in the experiments 
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that I perform using the ABCG model to allow us to quantitatively analyze the model and 

evaluate the model’s performance. I use these experiments to validate the model.  

Validation is defined as building the right model [86, 87]. There are numerous techniques 

for validating models. Klügl [88] describes a validation framework that consist of four major 

techniques: face validation, sensitivity analysis, calibration, and statistical validation. Law [86] 

defines three processes: compare to an existing system, subject matter expert reviews, and 

sensitivity analysis. Face validation consists of experts assessing animation, outputs, and 

immersion – looking through the eyes of a single agent. This equates to Law’s subject matter 

expert review. “Sensitivity analysis shows the effect of the different parameters and their values 

[88].” Primarily it reflects the effect of changing inputs on the system’s outputs. Calibration is 

the setting of appropriate values for parameters within the model. Statistical validation is 

validation of the outputs of the system using generally accepted statistical methods. 

I utilize three distinct experiments that allow me to explore the model and its relationship 

to its underlying theory and implement a use case to demonstrate its appropriateness in certain 

types of research. The structured design of experiments creates a plan for quantitative analysis of 

the model, model design, and measurement of the model outputs. In other words, the 

experiments are designed to allow me to validate the model. Figure 8 shows the experiment 

design structure for this research. 
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Figure 8: Experiment Design Structure 

The first experiment is designed to test the ABCG model against an existing model. The 

experiment compares the results of the two models to determine if an improvement is made in 

the new model. It must be noted that a bias exists in the experiment. The original model was 

altered to fit the modified glove game. The original design included the limitation of a Moore 

neighborhood for selecting agents. The changes are my own designs, but the basic structure of 

the various methods remain faithful to the original model. The models are executed on the same 

set of data and the results are compared to the core solution. The second experiment is designed 

to test the effectiveness of finding a core member. The model is executed using the strict hedonic 

games for which the solution is known. It tests a wider range of agent sizes and number of 

games. The results of the model are then statistically validated against the solution. The third 

experiment allows us to perform sensitivity analysis on the model. In this experiment, I use the 

same data from the second experiment but alter the initial condition to determine its effect on 

model results. The model is designed to initialize to the grand coalition. This experiment 

determines if this initial condition has an impact on the end state of the model. In other words, 

does the initial configuration affect the outcome?  

• Test the model against existing hybrid model 
to determine if there is improvementModel Comparison

• Test the model against complete data set 
solutionsStatistical Analysis

• Test the model for robustnessSensitivity Analysis

• Test the model for usability in a practical 
research caseUse Case
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The fourth experiment is a use case of a common research problem. It utilizes hedonic 

glove games. In the first experiment, the glove game was simplified to only one preference and a 

limited number of agents; this experiment is closer to the simple market assignment game. 

Agents have different preferences and different levels of resources that allow them a novel 

means to identify their utilities for various coalitions. Unlike the strict hedonic games, ties are 

allowed. This broadens the possible values and creates widely different core solutions.  

 3.6 EXPERIMENT #1: MODEL COMPARISON 

 In this experiment I compare my ABCG model to the Collins-Frydenlund model. Axtell, 

Axelrod, Epstein and Cohen [89] bring to light the need to compare like models to create  

“alignment of computational models”. They stress the fundamental need to determine if two 

models that claim to express the same phenomenon can produce the same results. I examine this 

by preparing both models to accept the same input and initial conditions and statistically 

comparing the output. 

 There are, however, several challenges and shortcomings to this experiment. First, the 

original model, while detailed in the interaction steps, incorporate a Moore’s neighborhood in its 

selection process. This is removed for comparison purposes but fundamentally alters the model. 

The changes in the Collins-Frydenlund model are subject to interpretation by the research team; 

this potentially produces some bias. Finally, models are purpose built; altering the model 

requires re-validating it to its new purpose. Essentially, this version of the model I believe is 

sufficient and valid for the purpose of comparison. However, it should not be construed as 

having any effect or implication on the original work produced. 
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3.6.1 MODEL DESCRIPTION 

 I initialize the Collins-Frydenlund model in the same manner as the ABCG model 

utilizing a coalition value variable to express the individuals’ preferences for the coalition with 

respect to all other coalitions of which they are a part. The interaction portion of the Collins-

Frydenlund model consists of 10 steps listed below. I realize the steps in the NetLogo program in 

Appendix.  

The Collins-Frydenlund model selects every agent in a random order and has them 

successively attempt to find a coalition that improves the value for all members of the new 

coalition. Once any change is selected, the model moves to the next agent.  

3.6.2 PARAMETERS: 

Time Steps: 25,000 ticks. 

NetLogo simulation time runs at an arbitrary number of discrete steps defined as a “ticks” 

[79]. My model is designed such that within the space of each tick there is a full execution of the 

model sequence. The model sequence described above is executed complete at each tick. A 

sample number of runs was executed, and it was determined that, for the size of the games being 

used, steady state is reached using on average less than 10,000 ticks. The number of ticks is 

arbitrarily selected to ensure that number is exceeded. Since the number of ticks is consistent 

between the two models, this should not impact the comparison. 

Number of Runs: 30 per game. 

I use a Monte Carlo method of sampling and set the number of runs at 30 for each game. 

Mendenhall and Sincich [90] note that the size of the sample required is dependent upon the 

nature of the sampled population. Sampling populations can near a normal distribution with 

sample sizes as small as 25. I assume 30 to be sufficiently large; however, I recognize that the 
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samples are not independent and identically distributed (IID), but the population has a finite 

mean and variance. Although I do not meet all the necessary criteria, I still infer properties of the 

central limit theorem: “If a random sample of n observations, 𝑌1, 𝑌2, … , 𝑌𝑛, is drawn from a 

population with finite mean µ and variance 𝜎2, then when n is sufficiently large, the sampling 

distribution of the sample mean Ῡ can be approximated by a normal density function [90].” As 

with any assumption, the risk of this is that the sample size is insufficient to accurate represent 

the population. However, due to the nature of the experiment, I believe the risks to be minor. 

Number of Agents: minimum of 3; maximum of 9 

The number of agents selected is intended to show the feasibility of the work. The 

minimum number of three agents allows for simple traceability while the maximum number of 

ten expands the experiment significantly enough to differentiate between the models. 

Number of Games: 50 per game size. 

Initial Condition: Grand Coalition. 

 The agents will initially be arranged in a single coalition. 

3.6.3 DATA INPUTS AND OUTPUTS 

Data inputs are files containing agents’ preferences and initial resources – number of left 

gloves and number of right gloves. The number of gloves is a randomly chosen number between 

zero and nine. Output is a coalition structure. 

3.6.4 ANALYSIS CRITERIA 

The analysis of this experiment will aid in determining if the ABCG model performs at 

least as well as the Collins-Frydenlund model with respect to the implemented theory. Both 

models will be compared to the known results. The measurement is the frequency with which the 
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model is able to correctly match a core solution coalition structure. The comparison between 

models is the determined frequency for each agent-set size and the overall average frequency. 

3.7 EXPERIMENT #2: STATISTICAL ANALYSIS 

This experiment is designed to statistically evaluate of the ABCG model’s ability to find a 

core solution member. Utilizing the randomly generated games I execute the model, retrieve a core 

solution, and compare that to the core solution set determined by the naïve algorithm.  

3.7.1 PARAMETERS: 

Time Steps: 50,000 ticks. 

I execute the model for 50,000 ticks. The 50,000-tick mark is arbitrarily chosen. The 

intent is to ensure, as well as possible, that steady state has been reached. This does not guarantee 

that steady state will be reached. However, for additional reassurance, I sampled 5 games from 

each of the agent sizes (13 – 15) to review the impact of the increased number of possible 

coalitions and executed 10 runs each. I determined that steady state is generally reached in less 

than 30,300 ticks. There is still a risk that steady state is not reached within this timeframe. 

Number of Runs: 30 per game. 

 As with Experiment #1, I use a Monte Carlo sampling with the intent that the sample size 

should be sufficient to approach normal. 

Number of Agents: minimum of 4; maximum of 15. 

 My experiment is executed on games with 4 agents on the low end and 15 agents on the 

high end. The low end was to eliminate examining trivial games. For example, a 1 agent game 

only has 1 possible coalition structure and is therefore automatically the core solution. Similarly, 

a two-agent game only has two possibilities and is trivial to determine which option is best suited 

for the agents. My requirement on the high end was to select an agent set size that ensures the 
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games are solvable in a reasonable amount of time. The designation of 15 agents is in line with 

the existing literature. For example, Collins et al. [75] use a maximum of 13 and Rahwan et al. 

[12] use a maximum of 25. The former solves for the core solution while the latter solves for 

maximum social welfare which requires fewer computations. 

 

Figure 9: G*Power statistical power test 

Number of Games: 45. 

To ensure that I have adequate sample sizes, I perform a statistical power analysis. “The 

power of a statistical test of a null hypothesis (𝐻0) is the probability that the 𝐻0 will be rejected 

when it is false, that is the probability of obtaining a statistically significant result” [91]. It is 

based on the mathematical relationship of the power, the population effect size, the significance 

level, and the sample size. There are several different software packages that aid in computing 
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statistical power tests. I utilize G*Power [92]. G*Power is an open-source general power 

analysis program. 

For the statistical power calculation, I desire a confidence level of 𝛼 = 0.05 and a power 

of 1 − 𝛽 = 0.95. Since I have no data to support the effect size, I assume a neutral value of 0.5. 

Figure 9 shows the calculation for the sample size. I execute 45 unique games per agent size 

group. That is, there are 45 unique 4-agent games; 45 unique 4-agent games; 45 unique 6-agent 

games, etc.  

Initial Condition: grand coalition 

 The grand coalition is the coalition structure with only one coalition containing all 

members of the set. Sandholm et al. [30] demonstrates that the best case cannot be found unless 

there is a search of the grand coalition and all the possible paired coalitions. By starting with the 

grand coalition, I ensure that at least one of these conditions is met. The interaction routines 

attempt, but do not guarantee, that the second condition will be met through the model execution. 

The structure of my model only allows a coalition change if it is beneficial to all agents of the 

new coalition; therefore, if the grand coalition is a core member, the interaction routines will not 

change the coalition structure. However, if the grand coalition is not a core member, it is quickly 

eliminated from consideration.  

 Figure 10 displays the graphical user interface (GUI) for the ABCG model and 

demonstrates the initial configuration for a 7-agent game. As mentioned, the game is initialized 

with all agents in a single coalition represented by the links between agents. The max-agent slide 

bar allows for designation of the number of agents in the game. The selector allows for the 

selection of an existing game previously solved using the naïve algorithm. The number of 
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coalitions tracks how many separate coalitions currently exist in the game and the coalition 

structure, once the game execution begins, will show which agents are in which coalitions. 

 

Figure 10: Initial configuration in ABCG model 

 

3.7.2 DATA INPUTS 

 The data input consists of the coalition value array for each of agents in the game. The 

array contains the coalition which the agent is a member and the value of that coalition to the 

agent.  

3.7.3 OUTPUTS 

 The output of the ABCG model is a coalition structure. 
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3.7.4 ANALYSIS CRITERIA 

 The experiment is designed to test the frequency with which the ABCG model correctly 

identifies a member of the core solution set for each game. The output coalition structure is 

compared to the various core members. The result of the comparison is a binary representing a 

match or no match. The primary statistical measurement is the percentage of times the model 

was able to correctly identify a core member. Additionally, I review the duration statistics for the 

ABCG model compared to the naïve algorithm. Since I know the naïve algorithm is NP-

complete for large agent set sizes, this measurement allows us to make decisions as to the trade-

off between execution time and precision of results. 

 The criterion for my analysis is ensuring that I my model finds a member of the core 

solution with an accuracy level of 95%. This level is measured against games with a non-empty 

core. It is important to realize that not all games have a non-empty core; however, I generally do 

not know this ahead of time. Collins, Etemadidavan, and Khallouli [75] show that the core 

results in an empty set an average of 5.27% for cooperative games with 3 to 13 agents, and 

7.09% for 10 or more agents. My algorithm will never match to an empty core.  

The model returns a coalition structure regardless of whether the core is empty or not. 

There are advantages and disadvantages to this. Researchers are always provided a result that is, 

at the very least, individually rational and generally more stable than previously tested coalition 

structures. However, without the knowledge of whether or not the core is empty, false 

assumptions can be made. As with all models, researchers need to consider the assumptions and 

constraints of the model carefully prior to application. 
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3.8 EXPERIMENT #3: SENSITIVITY ANALYSIS 

This experiment is designed to test my assumption that beginning with the grand 

coalition provides the greatest opportunity for the model to resolve to a core member coalition 

structure. The previous experiment provides us the initial data for comparison. This experiment 

will first test the opposite initial condition – each agent is a member of the singleton group. That 

is, each agent is in a group of one and the number of coalitions in the coalition structure is equal 

to the number of agents. The second part of the experiment will test the effect of the initial 

condition being randomly chosen.  

3.8.1 PARAMETERS: 

The parameters are generally the same as the previous experiment with the exception of 

the initial condition. 

Time Steps: 50,000 ticks. 

Number of Runs: 30 per game. 

Number of Agents: minimum of 4; maximum of 15. 

Number of Games: 54 per game size. 

 The statistical measure for this example differs from the previous. In Experiment #2, I 

compared frequencies to determine how well the model results matched the known core solution. 

In this test, I deem to determine the differences between matched pairs. To ensure that my 

sample size is adequate, I again employ the G*Power program. I alter the calculations to adjust 

for a two-tailed test. I determine that this experiment requires 54 samples to ensure the same 

statistical power used in Experiment #2. Figure 11 shows the results. 
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Figure 11: G*Power sample size results for two-tailed t-test with 0.95 statistical power 

 

Initial Condition: singleton coalitions and random coalitions. 

The previous experiment held the initial condition to the grand coalition. In this 

experiment, I execute first with the initial condition of each agent being in a coalition of one 

(singleton coalition). Next, I re-run each of the games starting with varied coalition selection. 

Agents will be randomly grouped into coalitions. Figure 12a shows the initial condition of 

singleton coalitions; Figure 12b shows a random selection of coalitions. 
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Figure 12: (a) Initialized singleton coalitions in ABCG model; (b) initialized random coalitions in ABCG 

model 

3.8.2 DATA INPUTS AND OUTPUTS 

Data inputs and outputs remain the same as the previous experiment. 

3.8.3 ANALYSIS CRITERIA 

The analysis of this experiment will aid in determining if the initial condition has any 

impact on the final coalition structure. While the previous experiment compared my results to the 

known solution, this experiment will compare the results of the three different initial conditions – 

the grand coalition, the singleton coalition, and the random coalition. I will attempt to determine 

if there are any significant statistical differences as a result of different initial conditions and, if a 

difference is found, which initial condition produces results that most frequently find a core 

member coalition structure. 

For this analysis, I use a two-tailed test with the student’s t-distribution to establish if the 

outcomes of the set of conditions varies from the outcomes of the second and third set of 

conditions. The data for this test is independent and identically distributed. I assume that the 
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distribution is normal although there is a possibility that it is not. However, I consider this a 

minor risk as t-test are robust and flexible on this condition. 

3.9 EXPERIMENT #4: USE CASE – GLOVE GAME 

Coalitions are groups of agents that “decide to act together, as one unit, relative to the rest 

of the [agents] … however, this arrangement will continue only as long as each player finds it 

desirable to act this way” [93]. In other words, coalitions are agents that unite for a purpose that 

provides them a benefit. A simplified way to explore this is using a pure exchange economy 

example. A pure exchange economy is one in which there are no produces and agents have only 

their initial endowments.  An example of a pure exchange economy that has been used in 

economic studies is the glove game. My use case will be a derivation of the glove game 

described in Shapley and Shubek [72]. The agents of the game are traders of gloves with a 

unique initial endowment of left gloves (L) and/or right gloves (R). Each trader has a utility for 

either pairs of gloves, 𝑢1(𝐿, 𝑅) = min {𝐿, 𝑅}, or the leather associated with gloves, 𝑢2 =  
𝐿+𝑅

2
. 

Traders form a coalition structure to maximize their utility. 

Economists have used the glove game to examine possible outcomes of endogenous 

coalition formations. The benefit of such a structure is that it is simplified but has an identifiable 

basis. It represents varying preferences and valuations based on those preferences. Unfortunately, 

like most coalition formation problems, using more than a few agents quickly makes the problem 

unwieldy. My use case demonstrates the ability of my model to aid researchers study this 

problem for a larger number of agents. The mechanics of the model are the same as used in the 

strict hedonic model; the difference being in the valuation of coalitions. The downside to this 

model, like the strict hedonic model, is that the result is singular – it does not produce the entire 
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core solution set – and the solution is not guaranteed to be a member of the core especially as the 

core may be empty. 

The glove game use case shows that my ABCG model can provide a means for 

researchers to examine the functions of a pure exchange economy for larger set sizes.  It also 

demonstrates the ease with which the simulation can be changed for use with different coalition 

value sets. The variation between the use case and the strict hedonic game is only the 

determination of the agents’ values for each coalition. Studying a pure exchange economy has 

helped researchers achieve insight into coalition behavior and has aided in the development of 

new theories. I believe that the use of simulation can further validate those theories. 

3.9.1 MODEL DESCRIPTION 

The agents are randomly provided with initial resources (left and right gloves) and a 

preference for pairs or leather. The difference between the games is the way in which I determine 

the value of the coalitions for each agent. Tables 7-10 are a representation of a 3-agent glove 

game. In this game, agents a, b, and c each have an initial set of resources (left and right gloves) 

and have a preference utility, u1or u2, that identifies the preference for pairs of gloves or leather 

respectively. Two coalition values are determined for each coalition: the maximum number of 

pairs that can be achieved by the coalition and the half the total number of gloves. The individual 

agent’s value for the coalition in this game is designated by an equal sharing of the gloves. 

Agents that prefer pairs will receive the total number of pairs divided by the total number of 

agents in the coalition; agents with a preference for leather will receive the total number of 

gloves in the coalition divided by twice the number of agents.  
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Table 7: 3-agent glove game example -- initial resources and preference 

Agents' Initial Resources and Preference 

Agent Left Gloves Right Gloves Preference Utility 

a 2 3 u1 

b 4 5 u1 

c 3 0 u2 

 

Table 8: 3-agent glove game example -- coalition and agent values 

  Coalition Value Agents' Value in Coalition 

Possible Coalitions u1 u2 a b c 

( a ) 2 2.5 2 -- -- 

( b ) 4 4.5 -- 4 -- 

( c ) 0 1.5 -- -- 1.5 

(a, b) 6 7 3.5 3.5 -- 

(a, c) 3 4 1.5 -- 2 

(b, c) 5 6 -- 2.5 3 

(a, b, c) 8 8.5 2.67 2.67 2.83 

 

Table 9: 3-agent glove game example -- agent values in coalition structure 

  Agents' Values 

Coalition Structures a b c 

[(a) (b) (c)] 2 4 1.5 

[(a,b) (c)] 3.5 3.5 1.5 

[(a,c) (b)] 1.5 4 2 

[(b,c) (a)] 2 2.5 3 

[(a,b,c)] 2.67 2.67 2.83 

 

Table 10: 3-agent glove game example -- core solution set 

Core Solution Set 

[(a) (b) (c)] 

 

Examining the possible coalitions shows that agent b would never form a coalition with 

any other agent as joining a coalition with any other agent decreases his utility. Therefore, only 

agent a and agent c are left to possibly combine. If agent a were to combine with agent c, the 

resulting coalition would be less for agent a than remaining independent – individual rationality. 
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Therefore, the only coalition structure that is not dominated and therefore a member of the core 

solution set is [(a) (b) (c)]. 

I employ the same techniques for testing my use case as I did for the strict hedonic game 

except for the coalition valuation step. For the strict hedonic games, I randomly ordered the 

agents’ coalition preferences and valued the coalition accordingly. In the glove games, the 

coalition values for each agent are based on the predetermined division of resources. Within the 

ABCG model, as the coalitions are formed, the values for each agent in the coalition are 

calculated and the coalition is tested to determine whether the new values benefit all agents in the 

coalition.  

3.9.2 PARAMETERS: 

The parameters are generally the same as the first experiment.  

Time Steps: 50,000 ticks. 

Number of Runs: 30 per game. 

Number of Agents: minimum of 4; maximum of 15. 

Number of Games: 20 per game size. 

Initial Condition: Grand Coalition. 

3.9.3 DATA INPUTS AND OUTPUTS 

I utilize the basic structure of the naïve algorithm presented earlier as my starting point 

for creating the set of games. This version of the algorithm is altered to provide agents with a 

random number of left gloves, right gloves, and an indicator for a preference of leather or pairs 

instead of a preference value for each coalition. The coalition preference value is calculated for 

each agent in each possible coalition using the formulas in the model description section above. 

Once all the coalition values are computed, the program solves for the core solution. 
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The sample size is 20 games per agent set size. Sampling shows that this version of the 

glove game produces an empty core about 75% of the time. Sampling at 600 per agent-set size 

(20 unique games executed 30 times) should not degrade my statistical power. The output for 

each run of the ABCG model is a coalition structure.  

3.9.4 ANALYSIS CRITERIA 

 The criteria for this analysis is the same as Experiment #1. The experiment will test the 

frequency with which the ABCG model correctly identifies a member of the core solution set for 

each game and determine if the output coalition structure is a member of the core. The analysis is 

designed to measure if I achieve find the core at least 90%.  

3.10 SUMMARY 

 In this chapter I provided the research details for creating and validating my ABCG 

model. I began by describing the methods used to create hedonic games and algorithmically 

solve those games. I utilized a naïve algorithm which solves the hedonic games in a “brute-

force” type effort. While this method provides a complete solution, it is computationally 

intensive and is impractical for large agent set sizes. However, it provided a significant test set 

for validation of the ABCG model.  

I described the heuristic model I designed to find a member of the core solution set. The 

model is an Agent-based model that incorporates cooperative game theory into its computational 

structure. It utilizes seven interaction routines to create different coalitions. Each new coalition is 

evaluated using the concepts that determine the core solution. Coalitions that improve the 

coalition value for every member of the coalition are incorporated into a new coalition structure. 

This continues for a pre-determined amount of simulation time known as “ticks”. The final 

coalition structure is then compared to the core solution of that game to determine if the model 

was able to find a core member. 
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The ABCG model does not explore the entire solution space as the naïve algorithm does. 

Instead, it uses stochastic sampling to create various coalitions. Since I introduce random 

sampling, statistical analyses are used to interpret the results. I utilized G*Power to determine the 

required sample size for a 95% statistical power. I also sampled to determine the appropriate 

number of simulation ticks required to reach a “steady state”, but intentionally went beyond that 

number to potentially address any outliers.   

Statistical analysis of results is considered the most important form of validation [86]; 

however, I further validated my model using sensitivity analysis. The sensitivity analysis 

examines the impact of initial conditions on the model. My first set of experiments was 

conducted with an initial condition that placed all agents in one coalition – grand coalition. The 

assumption was that by starting with the agents together, I was more likely to find a core member 

or at least ensure that I have tested Sandholm et al.’s [30] lowest level. However, there is no 

evidence that this initial condition is either optimal or impactful. I therefore designed an 

experiment to test the impact of the initial configuration on the ability to find a core member. 

Like the first experiment, the stochasticity of the model required us to generate several samples 

and statistically analyze these to determine at a 95% accuracy level if the initial condition has an 

impact. 

I establish my validation techniques and my null hypotheses for testing. Finally, I show 

through a use case the value that my model adds to the research community. Various 

experiments were conducted to test the statistical validity of the model, the improvement of the 

model over existing models, and the structural validity of the model. Senge and Forrester [94] 

discuss the need to validate the model structure through the generated behavior: “Tests of model 

behavior evaluate the adequacy of model structure through analysis of behavior generated by the 
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structure.” I examine the impacts of my model structure by testing variations on the order in 

which routines are executed. This allows me to determine if the generated behavior is truly the 

result of the base assumptions or is artificially induced by the routine ordering. 

Table 11 provides a listing of each of the experiments performed along with their 

corresponding descriptions and objectives.  
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Table 11: Set of experiments used to validate and determine the viability of the ABCG model in finding a 

core member coalition structure. 

Experiment 

# 

Experiment 

Name 
Description Objective 

1 Model 

Comparison 

This experiment is designed to 

compare the ability of the 

ABCG model to find a core 

member to the Collins-

Frydenlund model ability to 

find a core member. 

Determine if the ABCG 

model is at least as capable of 

finding a core solution 

member than the previous 

Collins-Frydenlund model. 

2 Statistical 

Analysis 

This experiment is designed to 

test the statistical validity of 

the ABCG model using a 

sample set of strict hedonic 

games and testing against a 

null hypothesis. 

Determine if the number of 

times the algorithm finds a 

core solution member is 

statistically significant. 

3 Sensitivity 

Analysis 

This experiment is designed to 

test the impact of the initial 

condition of the coalition 

structure on the ability to find a 

core member 

Determine if there is a 

statistically significant 

difference between the initial 

condition of the grand 

coalition compared to an 

initial condition of all 

singleton groups or random 

coalitions 

4 Glove Game 

Use Case 

This experiment is designed to 

show the ability of the ABCG 

model to be used in 

conjunction with existing 

research techniques and 

problems. 

Determine if the ABCG 

model can be effective in 

finding a core model for an 

existing research problem 

 

 This chapter described the research method and steps used to determine whether the 

ABCG model provides a reasonable means to find a core member. The next chapter discusses the 

results and analysis of this method. 
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4.0 RESULTS AND ANALYSIS 

 In this chapter I provide an analysis of my model experimentation. There are four distinct 

experiments set out in the method chapter that my study addresses. In the first experiment, I 

demonstrate that my model provides an improvement over a model currently found in the 

literature. I provide a direct comparison between the ability of my model to find a core member 

and the Collins-Frydenlund model’s ability to find a core member. In the second experiment, I 

show that I can increase the number of agents in the coalition structure solve games by directly 

assigning the coalition values. I also show examples of the difference in algorithm execution 

time between the naïve algorithm and the ABCG model. Experiment #3 provides insight into the 

impact of the model’s initial state. My experiment repeats the glove game from Experiment #1 

using the larger coalition sizes to show the model’s usefulness in a common research example.  

These four experiments exhibit the usefulness of the model in studying strategic coalition 

formation and aid in answering the research question: How can an ABM algorithm be designed 

such that its outcome is a member of the core solution set of a hedonic game greater than 90% of 

the time and the computation of the outcome completes in polynomial time? The frequency 

experiment provides an empirical comparison to show that the model can find a member of the 

core solution set greater than 90% of the time. The duration measurements demonstrate that the 

model runs in polynomial time despite the size of the coalition structure. I also examine the 

sensitivity of the model to the initial coalition structure to ensure that the model can be run with 

any starting coalition structure and still be expected to perform in the same way.  

 The remainder of this chapter is organized in three major sections. The first section 

describes the games that are used in the experiment. It provides a description of the data 

characteristics. The second section details the experiments and the results gleamed from each of 
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the experiments. The experiments section is broken down into four subsections: one for each 

experiment. The final section summarizes the analysis of the experiments and draws conclusions 

based on the results. 

4.1 GAME DESCRIPTIONS 

 As previously mentioned, I generate the input data by randomly assigning coalition 

values to each agent in the strict hedonic game and randomly assigning resources to each agent 

in the glove game. Experiment #1 used a small data set to determine if my model provided any 

significant improvements over a similar model found in the literature. The data set consisted of 

agent-set sizes ranging from 3 agents to 9 agents. Each agent set size consisted of 10 unique 

games for 80 unique games. For experiments 2 and 3, I executed the naïve algorithm 600 times 

to create unique strict hedonic games – 50 unique games for each of the 12 agent-set sizes 4 

through 15 – and 600 unique hedonic glove games. Out of those strict hedonic games, 536 of the 

600 games or 89.33% of the games had a non-empty core. Figure 13 shows the breakdown by 

agent-set size for non-empty core games versus empty-core games. Each of the agent-set sizes 

had at least 40 games with a non-empty core. Although this is slightly less than the objective of 

45 games each, I considered the overall sampling to be sufficient. 
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Figure 13: Strict hedonic game breakdown between non-empty core games and empty core games 

 

 The hedonic glove game experiment yielded greater variability in the core solution. 

Unlike the strict hedonic game, there are ties allowed for an agent’s preference. Under this 

condition, the core solution sets vary from a significant number of games having an empty core 

to games with thousands of core solutions. In the first execution of the naïve algorithm for the 

hedonic glove game, only 141 out of the 600 games, 23.50% had a non-empty core. Figure 12 

shows the breakdown among the various agent-set sizes. This set does not provide a sufficient 

non-empty sample set to achieve the desired statistical power. Therefore, I expanded the number 

of games to 100 per agent-set size. Figure 13 shows the expanded set. 
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Figure 14: Glove game breakdown between non-empty core games and empty core games 

 

 The next section reviews the model experiment and their results.  

4.2 ABCG EXPERIMENTS 

 This section reviews the results of the four experiments listed in the previous chapter. 

The first experiment compares my model to the Collins-Frydenlund model. My effort with this 

experiment is to determine if my model improved the current state found in the literature. The 

second experiment is designed to test the model in a broader setting; that is, using strict hedonic 

games with larger sizes. The third experiment provides a sensitivity analysis for the model. It 

tests the effects of the initial condition. Finally, the fourth experiment provides a use case for the 

model. It attempts to find a stable core solution in a known theoretical economics problem, the 

glove game, to demonstrate its usefulness in examining hedonic games with several agents. 

Experiment #1 results chart the frequency with which the Collins-Frydenlund model and 

the ABCG model were able to identify a core member for each Glove Game. The experiment 

shows the improvements achieved with the new algorithm but also indicates areas for potential 
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improvements. Experiment #2 changes the parameters from the glove game to a more generic 

hedonic game with up to 15 agents. Again, the frequency with which a core member is identified 

is graphed. In this experiment I see a wider range of results, partially due to games with an empty 

core. I will review the impact of empty-core games on the results as well as the benefits and 

drawbacks of the ABCG model results for empty core games. Experiment #3 results graph the 

differences in frequency based on different initial coalition structures. The model’s initial 

conditions range from the grand coalition, i.e., all agents in a single coalition, to each agent in a 

coalition by itself, to randomly assigning agents to a coalition. The results indicate that there is 

no significant difference in model results due to the initial coalition structure. Finally, 

experiment #4 demonstrates the use of the model in a theoretical economic research problem. 

The problem is a simple market economy game. Many versions of the game exist. I use a 

modified version of the glove game assignment market. The results are then compared to the 

analytical results of a naïve algorithm for the glove game. 

Each experiment is designed to demonstrate purpose and validity of the model. The 

experiments cover empirical validity, sensitivity analyses, and model comparisons. The next 

sections of this chapter provide the results and analysis of each experiment. 

4.2.1 EXPERIMENT #1 

 Axtell et al. [89] emphasize the need for Agent-based modelers to be able to compare 

models for validation. The initial experiment is designed to compare the Collins-Frydenlund 

model to my ABCG model utilizing a modified Glove Game. I utilized a small data set to 

determine the accuracy with which the Collins-Frydenlund model achieves finding a core 

member then to examine improvements gained by using the ABCG model. The data set is 

generated using the naïve algorithm. This section discusses the results of the simulation runs. 
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The results focus on the comparison of the effectiveness of the two algorithms (the original 

Collins-Frydenlund algorithm and the new one presented in this paper). Figure 15 shows the 

percentage of times the original Collins-Frydenlund algorithm reached a coalition structure that 

is a member of the core solution set (i.e., a core partition).  

  

Figure 15: Percentage of times the converted Collins-Frydenlund algorithm simulation coalition 

structure was part of the core solution 

 

Figure 16 shows the results of my algorithm. The new algorithm significantly 

outperforms the old algorithm. Also, the new algorithm has a high rate of finding a core member 

as its solution. Overall, 96.1% of the games resulted in finding a core member under the new 

algorithm; that is, out of the 3500 games executed, the resulting coalition structure was a 

member of the core 3363 times. Games with three-agents, four-agents, and seven-agents always 

found a core member; 488 out of 500 five-agent games found a core member; 498 of the six-

agent games resulted in a core coalition structure; and 499 games played with nine-agents 

achieved a core result.  
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Figure 16: Percentage of times the simulation coalition structure was part of the core solution. 

To verify that the result is statistically significant, I perform a one tail paired t-test with 

𝛼 = 0.05 to determine if the mean difference in the sample population is significant. The null 

hypothesis is that the Collins-Frydenlund model is at least as good as the ABCG model at finding 

a core member. The alternate hypothesis is that the ABCG model is better. Table 12 are the 

results of the one-tailed t-test. The results indicate that I should reject the null hypothesis and 

accept that the ABCG model shows statistical improvements. 

Table 12: One-tailed test results for paired t-test between Collins-Frydenlund model and ABCG model 

 Collins-Frydenlund Model ABCG Model 

Mean 0.691 0.961 

Variance 0.045 0.007 

Pearson Correlation 0.369  
Hypothesized Mean Difference 0.000  
t Stat -3.867  
P(T<=t) one-tail 0.003  
t Critical one-tail 1.895  
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The only concerning result from this experiment is the eight agent games. The eight-

player games, by contrast, significantly underperformed. Almost 25% of the time (122 out of 

500), the eight-agent game failed to conclude with a coalition structure that could not be 

dominated. The details of these games are shown in Table 11. An examination of the games that 

failed to reach a core solution showed that these games reached a local maximum. The algorithm 

used for the ABM belongs to a group known as “greedy algorithms”. These algorithms are based 

on achieving local optimal decisions with the hope of a global solution. However, the global 

solution is not actually represented or considered. Therefore, it is possible for a coalition to reach 

a value in which it is unwilling to reconsider given the rules for a change. That is the game stalls 

at a local maximum. Table 13, and resultant discussion, attempts to explain why this occurred 

with an example. 

Table 13: Agent coalition preference values for 8-agent game that does not achieve a core member 

solution; the first agent is represented by zero which is common in computing terminology. (a) Agent 

resources of the game; (b) Resulting coalition structures. 

  Agents’ Resources 

Agents Resources 
Agent 0 Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6 Agent 

7 

Left Gloves 0 2 9 0 6 2 3 7 

Right Gloves 4 4 4 8 3 1 5 9 

(a) 

  Agent Coalition Preference Values 

Core Coalitions Agent 0 Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6 

Agent 

7 

(0, 5) (1) (2, 3, 4) (6) (7) 1 2 5 5 5 1 3 7 

(0) (1) (2, 3, 4) (5) (6) (7) 0 2 5 5 5 1 3 7 

(0) (1,5) (2, 3, 4) (6) (7) 0 2 5 5 5 1 3 7 

Coalition Structure Achieved 

(0) (1,4) (2, 6) (3) (5) (7) 0 3.5 4.5 0 3.5 1 4.5 7 

(b) 

 

 The first part (a) shows the initial resources for each of the eight agents. The core 

coalition section of the second part (b) is the set of coalition structures and their utility values 
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within the core. Obviously, each player would like to obtain the highest utility. Part (b) also 

contains an example of a “sub-optimal” coalition structure that was achieved by the algorithm. 

To understand why a core partition was never achieved, I need to consider the linchpin coalition. 

The linchpin coalition in the core, in the game under consideration, consists of agents two, three, 

and four. A linchpin coalition is a coalition that occurs in all core partitions. Technically, the 

singleton coalition of agent seven is also a linchpin coalition, so is agent six’s singleton group. 

Thus, for a core partition to evolve, under my algorithm, from a given coalition structure, the 

linchpin coalition must be able to form. Unfortunately, in the example given above, this is not 

possible from the coalition structure achieved because of the limitation of the algorithm. 

The coalition consisting of agents two, three, and four represents the highest utility value 

that those agents could achieve, and it would be expected that they would always be together. 

However, during the simulation, the coalition structure forms a coalition consisting of agents one 

and four prior to achieving the two, three, four combinations. As a group, neither agent one nor 

four improves their position by isolating themselves and agents one or four do not improve their 

position by joining any core member coalition structure. Therefore, agents one or four are not 

willing to change coalitions. Also, the coalition does not benefit from merging with any other 

existing coalition. Hence, under my algorithm, there is no possibility that the coalition, of player 

one and four, will change. In fact, there is no incentive for any coalition in the coalition structure 

to change, given the rules of the algorithm. This leads to a local maximum being reached. 

The local maximum is not a member of the core and purely an artifact of the algorithm. 

This is due to the pair-wise nature of the algorithm; that is, at most, only two agents or coalitions 

are considered at any one time. For the linchpin coalition to form from the local maximum, the 

three agents, two, three and four, would need to be considered at the same time, within the 
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algorithm step, which is not possible because they are in three different coalitions. My heuristic 

algorithm is, in this respect, limited. However, the results demonstrate that, within a margin of 

error, it is possible to arrive at highly probable stable coalition structures which may or may not 

be in the core. This problem of being trapped in a local maximum could be overcome by using 

approaches likes simulated annealing [95]. I will examine in later experiments other possible 

ways to address this issue. 

These results demonstrate that the ABM is effective in achieving a stable coalition 

structure in which the players have no incentive to move to another coalition (at least under the 

algorithm restrictions). However, it does not identify every member of the core set; that is, not 

every possible core partition was reached by the algorithm. The ABM results tended to be biased 

towards one core partition over all others in the core. Figure 17 shows that only 36% of the 

possible core partitions were achieved. Further, there is a significant decrease in the average 

percentage of possible coalition structures reached when the number of players increases from 6 

to 7. This is most likely due to the size of the core increasing with little to no change in the 

number of unique coalition structures achieved. Specifically, for the 10 games with 6 players, 

there are a total of 61 coalition structures in all their cores; this increases to 174 when there are 7 

players. However, the number of unique coalition structures reached in the simulation is 15 and 

16 for 6 and 7 players respectively. This is most likely due to the structure of the model and the 

order in which the combinations are put forth. Once certain combinations have been achieved, 

coalitions that are not blocked, there is no chance of altering them. While not a flaw, it is 

important to note that it occurs. 
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Figure 17: Percentage of different core structures achieved using ABCG model 

 

4.1.2 EXPERIMENT #2 

Experiment #2 is designed to test the algorithm in a more generic set of hedonic games 

and with a larger number of agents in the game. Game sizes range from 4-agent games to 15-

agent games. The games I use are strict hedonic games; that is, ones in which each agent ranks 

each coalition by preference from lowest to highest, one being the least preferred coalition. Ties 

between coalitions are not permitted. In this experiment, I also update the ABCG model to 

address the issue of local maximums that was seen in the first experiment and to expand the 

number of coalitions tested at each simulation tick. 

Figure 18 shows the percentage of runs in which a core member was properly identified. 

The results range from a low of 71.6% to a perfect 100% match with the average being the 

model finding a match 83.6% of the time. However, for several of these games, no core solution 

exists. One feature of my algorithm is that it returns a coalition structure regardless of whether 

the core is empty. 
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Figure 18: Percentage of times the ABCG model result matched a core member 

 

In Figure 13 of the previous section in, I noted that overall, 10.67% of the games had an 

empty core. Therefore, the maximum potential match on average is 89.33%; I achieved 86.19% 

coalition matches. The ABCG model always returns a coalition structure. Games with an empty 

core, therefore, will never match the algorithm result. Figure 19 shows the frequency with which 

a core member was identified for all games with a non-empty core. A review of this chart shows 

that the model performs extremely well for games with 12 agents or less; however, there is a 

noticeable decline in the results for games with greater than 12 agents. I take a closer look at 

these games. 
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Figure 19: Percentage of times the ABCG model was able to identify a core member for games with a 

non-empty core 

 

There are 50 unique games for each agent set size and each game was executed 30 times. 

The first series that shows a significant decline in properly identifying a core member is the 13-

agent set of games. The hedonic games for 13 agents have 42 games with non-empty core and 8 

games with no core solutions. Figure 20 shows the results for the 42 games with a non-empty 

core. The ABCG model was able to accurate identify a core coalition structure without a miss for 

32 out of the 42 games (76.2%) and with greater than 95% accuracy for 81.0% of the time. 

However, in rare occasions, 6 times out of 42 or 14.3%, the model was less than 50% accurate in 

determining a core member. This implies that when the model is generally capable of finding a 

solution. However, there are games for which the heuristic is not well suited. 
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Figure 20: Breakdown of 13-agent non-empty core game matches 

 

I examine game 11 in greater detail to try to understand why the algorithm is not well 

suited to this game. Game 11 in the 13-agent set has a success rate of 3.3%; a correct coalition 

structure was found only once in 30 attempts. The core contained three coalition structures: 

• Core Coalition Structure 1 – [(0, 11) (1, 3, 5, 12) (2, 7, 8) (4, 9, 10) (6)] 

• Core Coalition Structure 2 – [(0, 11) (1, 3, 5, 12) (2, 8) (4, 9, 10) (6, 7)] 

• Core Coalition Structure 3 – [(0, 11) (1, 6) (2, 8) (3, 5, 7, 9, 12) (4, 10)] 

The execution of the 30 runs of game 11in the ABCG model netted 4 unique coalition structures:  

• ABCG Coalition Structure 1 – [(0, 11) (1) (2, 3, 6, 7) (4, 10) (5, 9) (8, 12)] 

• ABCG Coalition Structure 2 – [(0, 11) (1, 4) (2, 3, 6, 7) (5, 9) (8, 12) (10)] 

• ABCG Coalition Structure 3 – [(0, 11) (1, 10) (2, 3, 6, 7) (4) (5, 9) (8, 12)] 

• ABCG Coalition Structure 4 – [(0, 11) (1, 3, 5, 12) (2, 7, 8) (4, 9, 10) (6)]  

 

Table 14 contains the value each agent has for the core coalitions and the ABCG coalitions. The 
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structure that is a member of the core. Agents 0 and 11 consistently unite to form a coalition in 

both the core and the ABCG model. Agent 3’s values indicate a potential local maximum 

concern. Once Agent 3 became part of the coalition (2, 3, 6, 7) there was never another coalition 

tested that improved its result. Therefore, no other coalition would be accepted by Agent 3. 

Table 14: Core and ABCG model coalition values for 13-Agent Game 11 analysis 

Game 11 
Coalition 
Values 

Core 
Coalition 
Structure 

Value 1 

Core 
Coalition 
Structure 

Value 2 

Core 
Coalition 
Structure 

Value 3 

ABCG 
Coalition 
Structure 

Value 1 

ABCG 
Coalition 
Structure 

Value 2 

ABCG 
Coalition 
Structure 

Value 3 

ABCG 
Coalition 
Structure 

Value 4 

Agent 0 3,976 3,976 3,976 3,976 3,976 3,976 3,976 

Agent 1 3,290 3,290 2,435 13 163 2,445 3,290 

Agent 2 3,909 3,891 3,891 3,422 3,422 3,422 3,909 

Agent 3 3,238 3,238 2,664 4,031 4,031 4,031 3,238 

Agent 4 3,723 3,723 1,486 1,486 105 839 3,723 

Agent 5 3,834 3,834 3,605 3,215 3,215 3,215 3,834 

Agent 6 1,048 1,450 2,002 3,696 3,696 3,696 1,048 

Agent 7 4,025 2,874 3,620 4,031 4,031 4,031 4,025 

Agent 8 2,998 3,743 3,743 4,009 4,009 4,009 2,998 

Agent 9 1,925 1,925 3,595 3,912 3,912 3,912 1,925 

Agent 10 3,642 3,642 4,080 4,080 1,466 4,080 3,642 

Agent 11 3,799 3,799 3,799 3,799 3,799 3,799 3,799 

Agent 12 3,269 3,269 4,062 2,897 2,897 2,897 3,269 

 

This concept is central to the function of Agent-based modeling. ABM is a “bottom-up” 

system; the coalition structures are determined based on the agents’ rules and local interactions. 

There is no central authority controlling the agents’ actions or examining the details of coalition 

structure. Instead, the agents choose to stay in an existing coalition or migrate to another 

coalition based on their preferences between the coalitions. The benefit in this type of example is 

the efficiency with which comparisons are made; the drawback is that not all structures are 

analyzed independently.  

While I have attempted to mitigate the local maximization through increasing the 

variations and total number of combinations tested, I have not eliminated it. An alternative 
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method for mitigating local maximization is simulated annealing. Simulated annealing is a 

technique that has been used as a metaheuristic for combinatorial optimization problems [96]. It 

is “a local search algorithm (meta-heuristic) capable of escaping from local optima” [97]. This 

technique uses perturbations or small probabilistic offsets to move the problem from a local 

maximization to a more global maximization. For this model, simulated annealing could be 

implemented using small offsets for short durations of coalition values to mitigate local maxima. 

However, I decided to examine the model results at this time without modifications. I will look 

to simulated annealing as a future modification of the model. 

Game 12 presents a different challenge to the model. In game 12, 66.7% of the runs 

ended in successfully finding a core member. Analysis of the runs of this game indicates that the 

number of coalitions examined was likely insufficient to reach the appropriate result. To test this 

theory, I executed this game using a larger number of simulation ticks. 30 runs of the game were 

completed with a simulation time of 100,000 ticks. This new set of runs resulted in finding a core 

member 29 out of 30 times or 96.7% of the time. 

My examination of the 13-agent game set identifies two potential concerns, local 

maximization and insufficient duration. Next, I examine the 15-agent games to determine if these 

findings are consistent and if they are likely to increase with an increasing agent-set size. Figure 

21 shows the percentage of core coalition structure matches for the 15-agent hedonic games 

executed.  
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Figure 21: Breakdown of 13-agent non-empty core game matches 

 

The 15-agent game set consists of 43 out of 50 games with a non-empty core. Of those 43 

games, the ABCG model accurately selected a core coalition member 100% of the time for 30 

unique games, failed to get a single correct coalition structure in 2 games, and achieved finding a 

core coalition only once in 3 games. A review of game 6, a game where a core coalition structure 

is never returned, shows that the ABCG model returned 24 unique coalition structures. This 

implies that the model was unable to reach stability in the game. This is most likely the result of 

insufficient variations of coalitions tested. Again, I attempt to increase the number of simulation 

ticks to 100,000. However, this did not improve the results. There were still 25 unique coalition 

structures and no core matches. It is still reasonable to assume that there were insufficient 

comparisons made. The number of possible coalition structures is 1,384,958,545; the average 

number of comparisons made by the algorithm for this game is 2,248,700. Doubling the number 
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of simulation ticks increased the number of comparisons to 4,490,609 which still only amounts 

to about 0.325% of the total possible coalition structures.  

The ABCG model performs extremely well for 12-agent sets or less and with moderate, 

mixed results for larger agent sets. Specifically, it performed well for the 14-agent set but not for 

the 13 and 15-agent sets. And this could be improved by increasing the number of simulation 

ticks executed for each game. And it accomplishes this with a relatively low number of 

comparisons required and much lower computation requirement than the naïve algorithm. Figure 

22 shows the average number of comparisons made and the average duration of a game for each 

agent-set size. Despite the low number of comparisons in relation to the total number of possible 

coalition structures, the model is able to find a core member over 96% of the time when the core 

is not empty. 

 

Figure 22:Average # of comparisons performed and game duration for the ABCG model 
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The trend for the subset shown depicts a roughly linear growth for both the time it took to 

execute the model and the number of comparisons made. While the problem set is bound at 15 

agents due to the limitations in solving using the naïve algorithm, I believe that the trend would 

continue this path. However, there is evidence that the frequency with which the model can find 

a core member would decrease if the simulation time was held constant. An increase in the 

simulation time will not cause an exponential change in the model duration and might provide 

similar results for higher numbers of agents. This, however, is not empirically validated in this 

dissertation. 

The computation requirements the ABCG model, unlike the naïve algorithm, does not 

grow uncontrollably with the increase in agent set size. The naïve algorithm is exhaustive and 

guaranteed to determine all members of the core solution. As previously mentioned, the 

computational worst case for the naïve algorithm is O (𝑁𝑁). Figure 23 shows the time it took, in 

logarithmic scale, for the naïve algorithm to solve the existing games. While the naïve algorithm 

is far more efficient for small agent-set sizes, the ABCG model operates in significantly less time 

for the larger data sets. Additionally, the execution time and the number of comparisons can be 

varied, and the coalition structure returned is guaranteed to be at least independently rational.  
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Figure 23: Time required to solve the hedonic games using the naive algorithm 

While I focus on games with a non-empty core, it is still important to understand that 

there are games with an empty core. In an experiment by Collins, Etemadidavan and Khallouli 

[98], they generated 1,000,000 hedonic games of agent sizes 13 or less. Table 15 shows their 

results for agent-set sizes 4 through 13. The average number of games with an empty core ranged 

from 1.96% for the 4-agent set to 7.21% for the 11-agent set, with an average of 5.73%.   

Table 15: Percentage of games with an empty core in Collins et al. study 

% of Hedonic Games with an Empty Core 

4-
Agent 

5-
Agent 

6-
Agent 

7-
Agent 

8-
Agent 

9-
Agent 

10-
Agent 

11-
Agent 

12-
Agent 

13-
Agent Average 

1.96% 3.36% 4.62% 5.70% 6.44% 6.84% 7.09% 7.21% 7.11% 6.97% 5.73% 

 

The ABCG model produces a result irrespective of an empty or non-empty core. 

However, it means that the model cannot produce perfect results. The best the model can be 

expected to produce is subject to the expected level of non-empty core games. For example in 

Collins et al. [98], the best possible average for the hedonic games would be 94.27%. However, 

that does not imply that the model is useless if the core is empty. If the core is empty, the model 
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will return a result that is at least individually rational. Unfortunately, unlike models that do not 

assume agents are selfishly rational, the ABCG model cannot claim that each iteration improves 

the social welfare (the sum of all coalition values of the coalition structure). Social welfare 

maximization is not a function of core solutions.   

 Experiment #2 shows the potential of the model. The positive outcomes are that for 

games with a non-empty core, the model is very effective – it correctly identifies a core coalition 

structure 99.5% of the time – for games with 12 agents or less and showed some level of 

effectiveness for agent-set sizes 13, 14 and 15; 88.3%, 93.6%, and 79.6% respectively. These 

results are most likely due to two factors: local maximization and insufficient number of 

comparisons. Local maximization can be mitigated, but not eliminated, using simulated 

annealing. Insufficient comparisons can be overcome by increasing the number of simulation 

ticks for which the model is executed. This is a reasonable substitute for the naïve algorithm as 

the duration and number of comparisons for the results gained are considerably less than the full 

spectrum required for an exhaustive search.  

The model also always returns a coalition structure. At a minimum, the coalition structure 

is always individually rational. Further, even with a comparatively small search compared to the 

possible coalition structures the model was able to return a coalition structure that was a core 

member more than half the time (including evaluating games with an empty core solution set). 

Future work with this model will include determining adequate simulation time based on the size 

of the game. This will provide a useful boundary for varying agent-set sizes. 

Experiment #2 showed several positive outcomes of the ABCG model. Experiment #3 is 

designed to determine if the initial coalition structure has any impact on the final coalition 

structure. Sandholm et al. [30] note that for determining the social welfare maximization – i.e. 
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maximizing the sum of all coalitions – it is imperative to examine the grand coalition – all agents 

in a single coalition – and his level 2 coalition structure (described in the literature review). 

Experiment #3 is structured to explore any differences that occur when the initial coalition 

structure is not pre-set to the grand coalition and the grand coalition is not explicitly tested. The 

model is expected to perform the same regardless of which the initial coalition to which the 

agents belong.  

4.1.3 EXPERIMENT #3 

Experiment #3 provides an opportunity to determine if the initial coalition structure 

provides any advantages or disadvantages to the model results. That is, I examine whether the 

model is sensitive to the initial condition of the coalition structure. Experiment #2 has each 

model run begin with the agents all in singleton groups. The total number of coalitions in the 

coalition structure was equal to the number of agents in the game. In Experiment #3 I first 

initialized each run with all agents in one coalition – the grand coalition. I determine the 

percentage of times a core member is correctly identified and compare the results of the initial 

condition being the singleton coalitions to the initial condition being the grand coalition. The 

comparison allows me to review any differences that occur due to the initial condition. I then 

randomly assign coalitions for the initial coalition structure and determine the percentage of 

times a core member is found. Agents are assigned a coalition number from zero to the 

maximum number of agents. All agents with the same coalition number are placed in the same 

coalition without regard to preference to initial the game. The purpose of this comparison is to 

determine whether the model is sensitive to any initial condition. If the results of all three initial 

coalition setups yield similar results when finding a core member, then I conclude that the model 

is not sensitive to the initial condition of the coalition structure.  
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 Figure 24 shows the comparison for each of the three initial comparisons for all the 

games. The games used for this experiment all have a non-empty core. There is minimal 

difference between each of the samples based on the initialization of the coalition structure. 

However, to ensure that there are no statistically significant differences among the samples, I 

performed paired tests of the samples for comparison.   

  

Figure 24: Percentage of core member matches for various initial coalition structures 
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Table 16:Percentage of core matches for different initial coalition structures 

# of Agents 
Random 

Coalitions 
Individual 
Coalitions 

Grand 
Coalition 

Random to 
Individual 

Random to 
Grand 

4-agents 97.96% 98.03% 100.00% -0.001 -0.020 

5-agents 98.22% 98.00% 97.85% 0.002 0.004 

6-agents 100.00% 100.00% 100.00% 0.000 0.000 

7-agents 100.00% 100.00% 100.00% 0.000 0.000 

8-agents 100.00% 100.00% 100.00% 0.000 0.000 

9-agents 100.00% 100.00% 100.00% 0.000 0.000 

10-agents 100.00% 100.00% 100.00% 0.000 0.000 

11-agents 99.79% 99.79% 99.93% 0.000 -0.001 

12-agents 99.62% 99.70% 99.55% -0.001 0.001 

13-agents 89.60% 88.33% 90.40% 0.013 -0.008 

14-agents 94.47% 93.58% 93.90% 0.009 0.006 

15-agents 79.19% 79.56% 78.81% -0.004 0.004 

Average 96.57% 96.41% 96.70% 0.002 -0.001 

 

I performed a series of paired two-tailed t tests to determine if there is a statistically 

significant difference between starting the model with each agent in a singleton coalition versus 

starting the model with agents in randomly assigned coalitions. I then performed the same test 

with the initial coalition structure of all the agents in a single coalition – the grand coalition. The 

paired t test is used to determine if the mean difference between the sets of results is zero. Like 

many statistical tests, the two-tailed test has underlying assumptions. The first two assumptions 

are that the data is independent and identically distributed (IID); the third assumption is that the 

data distribution is normal. At this point I note the deficiency of performing this test. The data is 

not IID nor is it normally distributed. The data for each of the data initialization groups is 

negatively skewed indicating a consistent departure from a normal distribution. The data is also 

bounded – it cannot exceed 100% and cannot go below 0%. However, the nature of the paired 

test allows us to glean useful information despite relaxing the underlying conditions. Table 3 

provides some descriptive statistics that provide an understanding of similarities and differences 

in the data. 
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 The null hypothesis is that there is no difference between the paired samples: 𝐻0: 𝜇1 −

𝜇2 = 0 and the alternative hypothesis is that there is a difference between the paired samples: 

𝐻𝑎 : 𝜇1 − 𝜇2 ≠ 0. The significance level I use for rejecting the null hypothesis is 0.01. When I 

compare the results of the randomly initialized coalition structure to the individual coalitions in 

the initial coalition structure, I determine that the probability of the mean difference being zero is 

less than the significance level. Therefore, I accept the null hypothesis. The same is true for the 

randomly initialized to the initialization with the grand coalition structure. Again, I accept the 

null hypothesis and conclude that the initial coalition structure does not have a statistically 

significant impact on the results of the model. 

Table 17:T-Test results for the mean comparison of the null and alternative hypotheses 

 

Random to 
Individual Coalition 

Initialization 
Random to Grand Coalition 

Initialization  

Pearson Correlation 0.9975 0.9943 

Hypothesized Mean 
Difference 0 0 

df 11 11 

t Stat 1.1776 -0.6674 

P(T<=t) two-tail 0.2638 0.5183 

t Critical two-tail 3.1058 3.1058 

   

 The previous experiments showed me how the initial model compared to the model found 

in the literature, how the modified model performed against empirical data, and how the initial 

condition impacted the model. Experiment #4 shows how the model can be used further in 

research. 

4.1.4 EXPERIMENT #4 

Experiment #4 demonstrates the workings of the model in a common research use case.  

Similar to experiment #1, the use case is a variation on the Glove Game created by Shapley and 
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Shubik [72] to represent a simple assignment market. In this variation, I randomly assign both 

left gloves and right gloves to each agent. I also randomly assign a preference for either total 

numbers of gloves or pairs of gloves. I utilized hedonic games as they have the potential to 

represent various types of games. In this case, I tally the gloves, left and right respectively, and 

divide them among the agents. Each agent’s coalition value or utility is based on their preference 

for total gloves vs pairs of gloves. Specifically, if an agent prefers pairs, the agent’s value for the 

coalition is the total number of pairs divided by the number of agents in the coalition. If the 

agent’s preference is for total gloves, half the total number of gloves in the coalition is divided 

by the number of coalition members to obtain the agent’s coalition value.  

 The primary differences between the strict hedonic game and the glove game are the 

method in which the coalition value is derived. All other factors are the same. This allows us to 

utilize the ABCG model for both types of games. The data is generated using a naïve algorithm 

like the strict hedonic game that tests every coalition structure to find a member of the core. 

Agents are initialized with a random preference for pairs vs total gloves and a random number, 

between zero and nine, of right gloves and left gloves independently. The coalition value array is 

created, and the program runs the same as previously. 

As mentioned in the data section, my glove game produced a non-empty core about 

23.5% of the time. The data used is only for the non-empty core games. Due to the extreme 

duration of these runs and the low percentage of games with a non-empty core, I decide to reduce 

the number of unique games to 20. With 30 stochastic runs on 20 games, this creates a sample of 

600 games. I believe that this level of sampling does not degrade the statistical power.  
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Figure 25: Percentage of core matches for glove game 

Figure 25 shows the frequency with which the model identifies a core member in this 

assignment game type structure for the given games. The frequency is lower than in strict 

hedonic game experiments. As I examine both the glove games, I note that there is wide 

variation in the size of the core both within and between agent-set sizes. The core sizes range 

from 1 to 3,520. This greater variation has produced more local maximization and a need for 

examining more coalition combinations. There is a steady decline in the ability to find a core 

coalition structure as the agent-set size increases. As I have seen in the previous experiments, I 

recognize that there is possibly a need for more iterations through executing more simulation 

ticks. 

Although the frequency is lower than expected, I believe that this primarily the effect of 

local maximization. To describe the impact of this effect, I examine a game in the 8-agent game 

set. Out of the 30 stochastic runs, the ABCG model correctly identified a core member 8 times or 

26.7% of the time. Inspection of this game shows that 28 coalitions out of a possible 255 
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coalitions meet the individual rationality clause. However, of those combinations the values for 

each agent in the different combinations are often the same. For example, Agent 7 is a member 

of 11 of the 28 individually rational coalitions. Of those 11 coalitions, the value for Agent 7 is 

the same for nine of them. The model reaches a local maximization often for coalitions involving 

Agent 7 because this agent has no incentive to change coalitions. This is a limitation of my 

model. It is considerably less effective when there is significant similarity in the coalition values 

of an agent. In this example, the use of glove resources between zero and nine created highly 

similar coalition values in the data. Expressing the utility value in a broader spectrum will help 

alleviate, but not eliminate, this local maximization problem.  

Another challenge to my model is in the experimentation design. I arbitrarily determined 

the number of simulation ticks for which the model was executed. The uncertainty of reaching 

steady state caused us to question the results. To eliminate the uncertainty of this, the experiment 

would have benefitted from an improved method of determining the necessary duration. While 

smaller agent-set sizes can achieve steady-state in relatively few timesteps, increases in the agent 

set size require that I revisit the number of iterations needed to reach a steady state. The relation 

between number of time steps and the size of the agent-set is worthy of its own experiment and 

should be considered in future work. 

The use of the ABCG model for the traditional assignment game requires further 

refinement but still provides significant benefits. A core coalition structure was found 56.48% of 

the time. For the approximately 77% of the empty core games, the model produces a coalition 

structure that is at least individually rational. Any coalitions within the coalition structure that is 

not a singleton coalition is an improvement over the individually rational singleton coalition for 

each agent in the coalition. This provides some benefits to the researcher for all agent-set sizes. 
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4.2 SUMMARY 

In this chapter, I reviewed the series of hedonic games that comprise the data set for my 

experimentation. I performed four sets of experiments designed to compare my model to an 

existing model, statistically validated the frequency with which my model was able to find a core 

member, determined the impact of the initial condition on the model results, and showed the 

usefulness of the model in a traditional research problem. 

I demonstrated how the naïve algorithm created strict hedonic games and solved for those 

games for the core solution. I identified games with an empty core vs a non-empty core. And I 

described the amount of time that solving the core required including the exponential growth in 

duration time for the solutions as the agent-set size increased.  

I compared the ABCG model to a model in the existing literature and demonstrated that it 

outperformed the current model. I detailed the results of the experiments and showed that the 

ABCG model can find a core member greater than 96% of the time for games with a non-empty 

core solution. The challenges I noted with the model was local maximization and the need to 

better identify the number of iterations required. The local maximization is often a challenge 

when implementing heuristics. The downside to heuristic modeling is that without a central 

authority, local maximizations can occur. I performed a sensitivity analysis and determined that 

the initial condition that the agents were in had no impact on the model’s performance. Finally, I 

showed how the model can be used to with a traditional research problem. I took a modified 

version of the glove game and used the ABCG model to find a core member. The model was 

only successful in finding a core member 56.48% of the time. While the model was not as 

successful on the glove game as anticipated, it highlighted the need to understand the variance in 
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the data and determine the linkage between the agent-set size and the number of time step 

iterations needed. 

In the final chapter, I provide my conclusion of this work and discuss the work I have 

planned for the future. 
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5.0 CONCLUSION AND FUTURE WORK 

One of the topics that have always fascinated me is understanding why groups form the 

way they do. In classroom settings, we are often required to break into groups. In business, 

politics, and military strategy, we form alliances. There are a finite number of potential partners 

in these groupings but an exceptional number of possibilities. The study of strategic coalition 

formation is conceptually simple. There are a finite number of possible coalitions and agents 

have their preferences for which coalition they would like to join. The preference for one 

coalition over another, whether the result of resource access or joy of community, can be 

expressed as a utility value the agent holds for that coalition. And agents form coalitions based 

on those values. 

As mentioned, conceptually this is simple. However, it is tremendously difficult to 

actualize for any significant number of agents. Each agent’s preference is unique and combining 

these unique preferences to find a stable structure requires an enormous amount of computational 

effort. The time study in Experiment #2 shows that while checking each coalition structure for an 

agent-set size of 10 can be performed in an average 2.6 seconds, increasing the number of agents 

to 15 raises the average computation time to 579,757.61 seconds (or 161 hours). This makes the 

analytical solution difficult to use. Faster processors and parallel efforts can reduce the time, but 

this also comes at a cost. The motivation for this research is to introduce a heuristic method that 

can aid researchers in the ability to study of coalition formation through current economic theory 

without the computational overhead. 

Previous work on this topic shows that coalition formation is most often studied using 

cooperative game theory. Agent-based modeling and multi-agent systems have attempted to 

incorporate some aspects of cooperative game theory. This indicates that there is an 
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understanding of the ability to ABM to be an effective tool in studying coalition formation. 

However, the models do not provide complete representation of the theory, nor do they 

demonstrate complete alignment of the theory to the practical model. In this work, I have 

provided a heuristic that closely aligns with cooperative game theory and empirically tested the 

model to determine if it can obtain a coalition structure that is a member of the core greater than 

90% of the time for 15 agents or less. The model achieved a degree of success. Using strict 

hedonic games, the model found a core coalition structure over 96% of the time and the initial 

coalition structure did not statistically impact this result. Using the modified glove game was 

more challenging for the model. The glove game allowed ties in the coalition values. This 

created challenges in producing games with non-empty cores (only about 23% of the games had 

a non-empty core) and with the model’s ability to find a stable coalition structures. The model 

was only able to reach a core coalition structure about 58% of the time.  

 This dissertation intends to advance modeling and simulation by providing a heuristic 

that aids in studying strategic coalition formation using CGT. It delivers a model that improves 

on the model found in the literature, provides an efficient computational structure for comparing 

coalition values, and provides a tool that can be expanded for solution concepts beyond the core 

solution. For example, to use the model for social welfare, the only adjustment to the model 

would be the comparison values. Likewise to incorporate Shapley’s [59] marginal contributions, 

the adjustment required would be to re-initialize the coalition value matrix to reflect each agent’s 

payoff. The interaction structure and mechanisms to retrieve the coalition values remains 

unchanged. 

While the model produced mixed results, it demonstrates opportunities to future 

development as well as future research. The two areas of focus for improving the model are 
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understanding the proper duration or simulation ticks with respect to the agent-set size and the 

impact of similar utility values for the various coalitions. Both these topics can be explored with 

additional experimentation. However, further exploration of the topic can hopefully generate a 

more dynamic model that incorporates changes in coalition values based on dynamic events. For 

example, if a modeler needed to explore how the coalition dynamics are changing in the current 

environment with respect to the conflict in the Ukraine, the model would provide a platform to 

represent the changes in coalitions and coalition favor based on the population sentiment. 

 The field of strategic coalition formation is fertile for exploration with modeling and 

simulation. Heuristic algorithms provide an aid to traditional computational methods and the 

various social science fields have already embraced the discipline in many areas, for example 

Computational Social Science and Agent-based Computational Economics. There are many 

opportunities to formalize more models of their theories. 
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 APPENDICES 
 

 

APPENDIX: NAÏVE ALGORITHM FOR DETERMINING CGT CORE 
 

/* Brute Force Coalition Formation    */ 

/* Daniele Vernon-Bido                */ 

/* November 10, 2019   Initial version*/ 

 

/* Glove Game Version August 22, 2020 */ 

 

/* Main Program */ 

 

#include<iostream> 

#include<fstream> 

#include<sstream> 

#include<iterator> 

#include<string> 

#include<cmath> 

#include<algorithm> 

#include<ctime> 

#include<chrono> 

 

using namespace std; 

using namespace std::chrono; 

 

/* Global Variables */ 

float **colArray = NULL;              /* Contains the hedonic preference values*/ 

int *singletonArray = NULL;         /* Contains the preference for remaining alone */ 

int *colStructureValue = NULL;  /* Contains the preference for each agent in a coalition 
structure */ 
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int *blockedCoalitionArray = NULL; 

int numAgents; 

int numCoalitions; 

string inFile; 

string outFile; 

string fileAppend; 

 

 

int **resourceArray = NULL;         /* Contains the individual preference, # of left gloves, # of right gloves 
*/ 

 

string ConvertToBinary(unsigned long n) 

{ 

 char     result[(sizeof(unsigned long) * 8) + 1]; 

 unsigned index = sizeof(unsigned long) * 8; 

 result[index] = '\0'; 

 

 do result[--index] = '0' + (n & 1); 

 while (n >>= 1); 

 

 string bin = string(result + index); 

 

 /* Set string to proper length */ 

 if (bin.length() < numAgents) 

  bin.insert(0, numAgents - bin.length(), '0'); 

 

 return bin; 

} 

 

void SetRandomCoalitionValues() { 
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 /* DETERMINE COALITION VALUES*/ 

 

 string pFile; 

 string pString; 

 pFile.append("Input"); 

 pFile.append(fileAppend); 

 cout << pFile << endl; 

 

 ofstream preferenceFile(pFile); 

 preferenceFile.open(pFile, ios::out); 

 if (preferenceFile.is_open()) 

  preferenceFile.clear(); 

 

 /* Test write file */ 

 if (preferenceFile.fail()) 

  cout << "fail bit set" << endl; 

 if (preferenceFile.eof()) 

  cout << "eof bit set" << endl; 

 /**/ 

 

 

 int *hashArray = NULL; 

 int c = pow(2, numAgents);       /* c is the number of possible coalitions */ 

 unsigned int x = numAgents; 

 int m = pow(2, numAgents - 1);   /* m is max number of coalitions in which an agent can exist */ 

 string bString;                  /* bString holds the converted bit string */ 

 int leftGloves; 

 int rightGloves; 

 int coalitionAgents; 
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 /* Dynamic 2D resource array allocation */ 

 resourceArray = new int *[numAgents]; 

 for (int i = 0; i < numAgents; i++) { 

  resourceArray[i] = new int[3]; 

  //for (int j = 0; j < 3; j++) { 

   resourceArray[i][0] = rand() % 2; 

   resourceArray[i][1] = rand() % 10;      /* pick a number between 0 and 9 to 
allocate # of left gloves */ 

   resourceArray[i][2] = rand() % 10;      /* pick a number between 0 and 9 to 
allocate # of right gloves */ 

  //} 

 } 

 

 /* Dynamic 2D array allocation & coalition value assignment */ 

 colArray = new float *[numCoalitions]; 

 for (int i = 0; i < numCoalitions; i++) { 

  leftGloves = 0; 

  rightGloves = 0; 

  coalitionAgents = 0; 

  colArray[i] = new float[numAgents]; 

  for (int j = 0; j < numAgents; j++) { 

   colArray[i][j] = 0; 

   bString = ConvertToBinary(i); 

   if (bString.length() < numAgents) 

    bString.insert(0, numAgents - bString.length(), '0'); 

   if (bString[j] == '1') { 

    leftGloves = leftGloves + resourceArray[j][1]; 

    rightGloves = rightGloves + resourceArray[j][2]; 

    coalitionAgents++; 

   } 

  } 
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  if (coalitionAgents > 0) { 

   float prefOne = (min(leftGloves, rightGloves)) / coalitionAgents; 

   float prefTwo = ((leftGloves + rightGloves) * .5) / coalitionAgents; 

   for (int j = 0; j < numAgents; j++) { 

    if (bString[j] == '1') { 

     if (resourceArray[j][0] == 0) { 

      colArray[i][j] = prefOne; 

     } 

     else { 

      colArray[i][j] = prefTwo; 

     } 

    } 

   } 

  } 

 

 } 

 

 

 cout << "Write to Preference File" << endl; 

 

 for (int i = 0; i < numAgents; i++) { 

  pString.clear(); 

  for (int j = 0; j < 3; j++) { 

   pString.append(to_string(resourceArray[i][j])); 

   if (j < 2) 

    pString.append(","); 

  } 

  preferenceFile << pString << endl; 

 } 

 



116 
 

 for (int i = 0; i < numCoalitions; i++) { 

  pString.clear(); 

  for (int j = 0; j < numAgents; j++) { 

   pString.append(to_string(colArray[i][j])); 

   if (j < numAgents - 1) 

    pString.append(","); 

  } 

  preferenceFile << pString << endl;   

 } 

 preferenceFile.close(); 

} 

 

bool CheckCoalitionStructure(int *ptr, int x) { 

 bool checked = true; 

 int* p = max_element(ptr, ptr + numAgents);                     /* max # of coalitions */ 

 string binStr; 

 string binStr2; 

 int value; 

 int expValue; 

 

 for (int j = 0; j < numAgents; j++) { 

  colStructureValue[j] = 0; 

 } 

 for (int i = 1; i <= *p; i++) { 

  expValue = numAgents - 1; 

  value = 0; 

  binStr.clear(); 

 

  /* Identify the various coalitions within the coalition structure*/ 

  for (int j = 0; j < numAgents; j++) { 
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   if (ptr[j] == i) { 

    binStr.append("1"); 

    value += pow(2, expValue); 

   } 

   else 

    binStr.append("0"); 

   expValue--; 

  } 

  /* Enter the coalition structure values */ 

  for (int j = 0; j < numAgents; j++) { 

   if (binStr[j] == '1') 

    colStructureValue[j] = colArray[value][j]; 

  } 

  /* Determine if it satisfies individual rationality */ 

  if (blockedCoalitionArray[value] == 1) { 

   checked = false; 

   return checked; 

  } 

 } 

 return checked; 

} 

 

bool CheckDominance(int *ptr) { 

 bool blocked = true; 

 string binString; 

 for (int i = 1; i < numCoalitions; i++) { 

  if (blockedCoalitionArray[i] == 0) { 

   binString = ConvertToBinary(i); 

   blocked = true; 

   for (int j = 0; j < numAgents; j++) { 
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    if (binString[j] == '1') { 

     int x = colStructureValue[j]; 

     if (colArray[i][j] <= colStructureValue[j]) { 

      blocked = false; 

      j = numAgents; 

     } 

    } 

   } 

   if (blocked) 

    return false; 

  } 

 } 

 return true; 

} 

 

void FindCoalitionStructures() { 

 

 /* Create output file name */ 

 

 //outFile = "C:\\Users\\Daniele\\Dropbox\\Dissertation\\GT Prototype\\Strict Hedonic 
Results\\"; 

 outFile.clear(); 

 outFile.append("Output"); 

 outFile.append(fileAppend); 

 cout << outFile << endl; 

 

 ofstream outputFile(outFile); 

 outputFile.open(outFile, ios::out); 

 if (outputFile.is_open()) 

  outputFile.clear(); 
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 /* Test write file */ 

 if (outputFile.fail()) 

  cout << "Output file -- fail bit set" << endl; 

 if (outputFile.eof()) 

  cout << "eof bit set" << endl; 

 /**/ 

 

 int r = 1; 

 int j = 0; 

 int n1 = numAgents - 1; 

 int *b = NULL; 

 int *c = NULL; 

 string writeString; 

 

 b = new int[numAgents]; 

 c = new int[numAgents]; 

 for (int i = 0; i < numAgents; i++) { 

  b[i] = 0; 

  c[i] = 0; 

 } 

 c[0] = 1; 

 b[0] = 1; 

 

 bool continueLoop = true; 

 colStructureValue = new int[numAgents]; 

 

 

 if (outputFile.is_open()) { 

  while (continueLoop) { 
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   while (r < n1) { 

    r++; 

    c[r - 1] = 1; 

    j++; 

    b[j] = r; 

   } 

   int x = numAgents - j + 1; 

   for (int y = 1; y < x; y++) { 

    c[n1] = y; 

    /* check/write if coalition structure is not blocked */ 

    if (CheckCoalitionStructure(c, x)) { 

     /* determine dominance*/ 

     if (CheckDominance(c)) { 

      /* write to file */ 

      for (int i = 0; i < numAgents; i++) { 

       writeString.clear(); 

       writeString.append(to_string(c[i])); 

       writeString.append(","); 

       outputFile << writeString; 

       //outputFile << c[i] << " "; 

       cout << c[i] << ","; 

      } 

      outputFile << endl; 

      cout << endl; 

     } 

    } 

   } 

   r = b[j]; 

   c[r - 1]++; 

   if (c[r - 1] > r - j) 
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    j--; 

   if (r == 1) { 

    continueLoop = false; 

    cout << "End coalition formation loop" << endl; 

   } 

  } 

  outputFile.close(); 

 } 

 else 

  cout << outFile << " does not exist"; 

} 

 

void DetermineBlockedCoalitions() { 

 /* Based on a strict hedonic preference, determine which coalitions are blocked */ 

 

 /* Create an array of values each agent would have if they were on their own */ 

 /* Rationale: no agent will accept a coalition that is not at least as good as individuality 
(individually rational) */ 

 

 int n = numAgents; 

 singletonArray = new int[n]; 

 int singletonRow = 0; 

 for (int i = 0; i < n; i++) { 

  singletonRow = pow(2, i); 

  singletonArray[n - i - 1] = colArray[singletonRow][n - i - 1]; 

 } 

 

 /* Mark any coalition that defies individual rationality */ 

 string bString; 

 string bString2; 
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 blockedCoalitionArray = new int[numCoalitions]; 

 for (int i = 0; i < numCoalitions; i++) { 

  bString = ConvertToBinary(i); 

  blockedCoalitionArray[i] = 0; 

  for (int j = 0; j < n; j++) { 

   /* Block coalition if agent is better off alone (individual rationality) */ 

   if (bString[j] == '1' && colArray[i][j] < singletonArray[j]) { 

    blockedCoalitionArray[i] = 1; 

    //cout << "Blocked Coalition: " << i << endl; 

    j = n; 

   } 

  } 

 } 

 

 /* Compare all coalitions */ 

 

 

 cout << "Ending blocked coalition structures" << endl; 

 /* Still need to check for other blocked coalitions*/ 

} 

 

/*void SetCoalitionValues() { 

 

 inFile = "C:\\Users\\Daniele\\Dropbox\\Dissertation\\GT Prototype\\Strict Hedonic Inputs\\"; 

 inFile.append(to_string(numAgents)); 

 inFile.append("AHedonicPreference.txt"); 

 cout << inFile << endl; 

 

 ifstream inputFile; 
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 string inputString; 

 stringstream lineStream; 

 string c; 

 

 /* Test read file  

 inputFile.open(inFile, ios::in); 

 if (inputFile.fail()) 

  cout << "Input file -- fail bit set" << endl; 

 if (inputFile.eof()) 

  cout << "eof bit set" << endl; 

 /**/ 

 

 /* Dynamic 2D array allocation  

 colArray = new int *[numCoalitions]; 

 for (int i = 0; i < numCoalitions; i++) { 

  colArray[i] = new int[numAgents]; 

  for (int j = 0; j < numAgents; j++) 

   colArray[i][j] = 0; 

 } 

 

 /* Read in a .csv file into a 2d array  

 if (inputFile.is_open()) { 

  for (int i = 0; i < numCoalitions; i++) { 

   getline(inputFile, inputString); 

   lineStream.clear(); 

   lineStream.str(inputString); 

   int j = 0; 

   while (getline(lineStream, c, ',')) { 

    colArray[i][j] = stoi(c); 

    j++; 
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   } 

  } 

 } 

 else 

  cout << inFile << " does not exist"; 

}*/ 

 

int main() { 

 

 srand((unsigned)time(NULL)); 

 

 for (int x = 4; x < 16; x++) { 

  /***********************************************/ 

  /*****   INSERT NUMBER OF AGENTS FOR GAME  ****/ 

 

  numAgents = x;  /* number of agents in game  */ 

  numCoalitions = pow(2, numAgents); 

 

  /***********************************************/ 

 

  time_t now = time(0); 

  struct tm ltm; 

  localtime_s(&ltm, &now); 

 

  string pFile; 

  pFile.clear(); 

  pFile.append("Duration"); 

  fileAppend.clear(); 

  fileAppend.append(to_string(numAgents)); 

  fileAppend.append("Agents"); 
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  fileAppend.append(to_string(ltm.tm_year)); 

  fileAppend.append(to_string(ltm.tm_mon)); 

  fileAppend.append(to_string(ltm.tm_mday)); 

  fileAppend.append(".txt"); 

  pFile.append(fileAppend); 

 

  ofstream durationFile; 

  durationFile.open(pFile, ios::app); 

 

 

  /* Test write file */ 

  if (durationFile.fail()) 

   cout << "Duration file -- fail bit set" << endl; 

  if (durationFile.eof()) 

   cout << "Duration eof bit set" << endl; 

 

  /* 3 primary functions in the driver module     */ 

  /*    Set coalition values                      */ 

  /*    Determine blocked coalitions              */ 

  /*    Find coalition structures within core     */ 

 

  for (int i = 51; i < 100; i++) { 

   // Provide 10 sample files 

   fileAppend.clear(); 

   fileAppend.append(to_string(numAgents)); 

   fileAppend.append("Agents"); 

   fileAppend.append(to_string(ltm.tm_year)); 

   fileAppend.append(to_string(ltm.tm_mon)); 

   fileAppend.append(to_string(ltm.tm_mday)); 

   fileAppend.append(to_string(ltm.tm_hour)); 
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   fileAppend.append(to_string(ltm.tm_min)); 

   fileAppend.append("-"); 

   fileAppend.append(to_string(i)); 

   fileAppend.append(".txt"); 

 

   //SetCoalitionValues(); 

   cout << "Set  Coalition Values" << endl; 

   SetRandomCoalitionValues(); 

   auto start = high_resolution_clock::now(); 

   cout << "Determine Blocked Coalitions" << endl; 

   DetermineBlockedCoalitions(); 

   cout << "Find Coalition Structures" << endl; 

   FindCoalitionStructures(); 

   auto stop = high_resolution_clock::now(); 

   auto duration = duration_cast<microseconds>(stop - start); 

   

   durationFile << pFile; 

   durationFile << ","; 

   durationFile << to_string(duration.count()); 

   durationFile << endl; 

   cout << pFile << "," << to_string(duration.count()) << endl; 

  } 

  durationFile.close(); 

 } 

 

 cout << "End Program" << endl; 

 

 /* REMEMBER TO CLEAR ALL POINTERS! */ 

} 

 



127 
 

APPENDIX: NETLOGO PROGRAM FOR ABCG MODEL 
 
;; ************************************************************* 
;; ***  COALITION FORMATION ROUTINES 
;; **       Use ABM to find a core member 
;; ***  D. Vernon-Bido 
;; **        Version 6.6    8/7/21 
;; ***  Change trio to random size coalition   dvb 7/18 
;; ***  Sensitivity analysis  dvb 8/9 
;; ***      8/25 starting from solo coalition 
;; **   Strict Hedonic Version 
;; ************************************************************* 
;; ** Migrate from Glove Game to Strictly Hedonic game 3/17/20 
;; ** Refactor code  5/30/20 
;; ** Migrate from pairs to increased combination sizes 5/31/20 
;; ** Corrected bug in determine value (binStr was reversed) 6/20/21 
 

extensions [ array matrix ] 

globals [ 

  ;max-agents                ; number of agents in game (N) 

  coalitionValueInput      ; string of coalition values from input file 

  coalitionValueList        ; list of coalition values for a given coalition 

  coalitionValueMatrix     ; 2D array of coalition values 

  max-coalitions            ; number of coalitions possible 

  decValue                  ; index value of current coalition 

  decCounter                ; size of current coalition 

  fname                     ; input file name 

  next-color 

  control-master            ; list of all control #s 

  control-number            ; array of control # 

  orderMatrix               ; order of routine execution 

  agent-list                ; random ordered list of agents 

  next?                     ; boolean for checking end of list 

 

  ;; Variables for metrics 

  total-coalitions           ; number of existing coalitions 
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  max-agent-value           ; largest agent coalition value v(S) 

  total-coalition-value      ; sum of all coalition values 

  grand-coalition-value    ; v(N) 

  avg-agent-value            ; average agent payoff 

  total-joins 

  total-splits 

  coalition-list 

  prior-coalition-list 

  final-coalition-list 

  note-tick 

  gl-master 

] 

turtles-own [ 

  coalitionAdder            ; agent's additive value to determine coalition number  *STATIC* 

  singletonValue            ; agent's value in singleton coalition                  *STATIC* 

  currentCoalition          ; agent's current coalition 

  currentValue              ; agent's value in current coalition 

  newCoalition              ; agent's proposed coalition 

  newValue                  ; agent's value in proposed coalition 

  coalitionSize             ; coalition size 

  priorValue                ; agent's previous value 

  priorCoalition            ; agent's previous coalition 

] 

 

;; SETUP -- Initialize turtles and groups 

;; 

;; Determine initial groups and coalition values 

to setup 

  clear-all 

  set next-color                 5 
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  ;set max-agents            4 

  set max-agent-value   0 

  set max-coalitions         (2 ^ max-agents) 

  set total-coalitions        max-agents 

 

  ;; Create agents 

  crt max-agents [ 

    set color 99 

    set shape "person" 

    set size 2 

    setxy (random-xcor * .85) (random-ycor * .85) 

    set newCoalition random max-agents                ; randomly set next possible coalition 

    set coalitionAdder (2 ^ (max-agents - who - 1))  ; determine coalition adder value 

    set currentCoalition (2 ^ who) - 1               ; set current coalition number to singleton coalition 

    set coalitionSize 1                               ; # of agents in coalition -- coalition size = 1 

    set currentValue 0                                ; current value = 0 

    set priorValue 0                                  ; previous value = 0 

    set priorCoalition 0                              ; previous coalition = 0 

  ] 

 

  ;; *** List of master control numbers – used to load files 

  set control-master ["0" "0" "0" "0" "120117859" "120117859" "120117859" "12011790" "12011790" 
"12011791" "12011793" "12011797" "120117181" "1201171958" "12012076" "1214291512"] 

  set control-number array:from-list control-master 

 

  ;; *** Create a matrix containing all the coalition values read in from a text file 

  set coalitionValueMatrix matrix:make-constant max-coalitions max-agents 0         ; creates a matrix with 
dimension # of coalitions x number of agents & initializes to zero 

 

 

  ;set fname "…\\Strict Hedonic Inputs\\xAgents\\InputxAgents-y.txt" 
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  let cn array:item control-number max-agents 

  set fname "…\\Hedonic Inputs\\" 

  set fname (word fname "Input" max-agents "Agents" cn "-" selector ".txt") 

 

  ;show fname 

 

  ifelse file-exists? fname [                                                            ; check for input text file 

    file-close 

    file-open fname 

    let i 0 

    let j 0 

    let continue true 

    let firstLine true 

    let ss1 0 

    let pos 0 

    while [continue] [ 

      set coalitionValueInput file-read-line                                                              ; read input string 

      set j 0 

      if empty? coalitionValueInput[ 

        set j max-agents 

        set continue false 

      ] 

      ;show coalitionValueInput 

      while [j < max-agents - 1][ 

        set pos position "," coalitionValueInput                                                           ; find the comma 

        set ss1 substring coalitionValueInput 0 pos                                                        ; split string at comma 

        set coalitionValueInput substring coalitionValueInput (pos + 1) (length coalitionValueInput)      ; 
remove value from input string 

        matrix:set coalitionValueMatrix i j (read-from-string ss1)                        ; move coalition values 
into matrix 

        set j j + 1 
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      ] 

      if continue [ 

        matrix:set coalitionValueMatrix i j (read-from-string coalitionValueInput) 

      ] 

      set i (i + 1) 

    if file-at-end? [ 

        set continue false 

        file-close 

      ] 

    ] 

  ][ 

    show "File Not Found!" 

  ] 

  ;show coalitionValueMatrix 

  ;; *** Initialize values 

  ask turtles [ 

    set singletonValue matrix:get coalitionValueMatrix   (2 ^ (max-agents - who - 1))  (who) 

    set label who 

  ] 

 

  let i 0 

  ; ** test next possible coalitions to see if payoff improves 

  while [i < max-agents][ 

    if any? turtles with [newCoalition = i][ 

      check_coalition i 

    ] 

   set i i + 1 

  ] 

 

  ; initial conditions 
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  ;fully_connect_network 

  ask turtles [ set newCoalition  0 ]  ; clear test coalition value 

  gather_metrics 

  reset-ticks 

end 

;;****** END SETUP ROUTINE ************* 

;____________________________________________________________________________ 

 

;; ***** PROGRAM EXECUTION *************** 

 

to go 

  if ticks = 50000 [ 

    convert_coalition_list               ; make coalition list readable 

    show final-coalition-list 

    show note-tick 

    stop 

  ] 

  set agent-list (list ) 

  ask turtles [ 

    set agent-list lput who agent-list 

  ] 

 

  set next? true 

  foreach agent-list [ [ i ] -> create_random_group i] 

  gather_metrics 

 

  if (total-coalitions > 1) [ 

    join_coalition 

  ] 
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  remove_from_coalition 

  pair_coalition 

  trio_coalition 

  defect_coalition 

  split_coalition 

  single_coalition 

  gather_metrics 

  convert_coalition_list 

  if (coalition-list != prior-coalition-list)[ 

    set note-tick ticks 

    set prior-coalition-list coalition-list 

  ] 

  tick 

end 

;____________________________________________________________________________ 

 

 

;; ** This routine creates a fully connected network as the initial condition 

to fully_connect_network 

  ask turtles [ 

    create-links-with other turtles 

    set currentCoalition (max-coalitions - 1) 

    set currentValue matrix:get coalitionValueMatrix currentCoalition  who 

    set coalitionSize max-agents 

  ] 

  set total-coalitions 1 

  repeat 5 [layout-spring turtles links .2 7.5 .5] 

end 

;____________________________________________________________________________ 
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;;******* GENERIC ROUTINES TO CHECK FOR UPDATES AND PROVIDE HOUSEKEEPING ********* 

 

;; *** Determine newValue 

to determine_newValue [ coNo ] 

  ;show "enter determine_newValue" 

  let binStr array:from-list n-values max-agents [0] 

  ask turtles with [ newCoalition = coNo ][ 

    array:set binStr who 1 

  ] 

 

  let expValue (max-agents - 1) 

  set decValue 0 

  set decCounter 0 

  let i 0 

  while [expValue >= 0][ 

    if array:item binStr i = 1 [ 

      set decValue ( decValue + (2 ^ expValue) ) 

      set decCounter + 1 

    ] 

    set expValue (expValue - 1) 

    set i + 1 

  ] 

 

  ;show matrix:get-row coalitionValueMatrix decValue 

  ask turtles with [ newCoalition = coNo ][ 

    ;set newValue matrix:get coalitionValueMatrix decValue (max-agents - who - 1) 

    set newValue matrix:get coalitionValueMatrix decValue who 

  ] 

end 
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;____________________________________________________________________________ 

 

; Reset newValue and newCoalition 

to reset_newValue_newCoalition 

  ask turtles with [newCoalition > 0 ][ 

    set newValue 0 

    set newCoalition 0 

  ] 

end 

 

;_____________________________________________________________________________ 

 

; Set newValue and newCoalition for individual rationality 

to rearrange_single [ t1 coNo ] 

  let tempCoalitions max-coalitions + 9 

  ask turtles with [ currentCoalition = coNo ][ 

    if t1 != who [ set newCoalition tempCoalitions] 

  ] 

  exit_coalition t1 tempCoalitions 

  reset_newValue_newCoalition 

  set_color_and_links  decValue 

 

end 

;____________________________________________________________________________ 

 

; This routine test the value of a new coalition to see if all the agent's in the coalition 

; improve their payoff. If so, the new coalition is accepted and updated. 

 

to check_coalition [ coNo ] 
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  let update?   true 

  let tempCount 0 

 

  determine_newValue coNo 

  ask turtles with [newCoalition = coNo][ 

    if (newValue <= currentValue) [ set update? false] 

  ] 

 

  set tempCount count turtles with [newCoalition = coNo] 

  ;ensure that there are turtles with newCoalition available to check 

  if tempCount = 0 [ 

    show "tempCount error" 

    set update? false 

  ] 

 

  ifelse update? [ 

    update_coalition coNo 

    set next? false 

  ][ 

    set next? true ] 

end 

 

to update_coalition [ coNo ] 

  ;show "update coalition" 

  determine_newValue coNo 

  ask turtles with [newCoalition = coNo][ 

    ;show newCoalition 

    ask my-links [die] 

    set priorValue          currentValue 

    set priorCoalition      currentCoalition 
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    set currentValue        newValue 

    set currentCoalition    decValue 

    set coalitionSize       decCounter 

    set newCoalition        0 

    set newValue            0 

  ] 

 

  set_color_and_links  decValue              ; designate new group with color change and link updates 

 

end 

;____________________________________________________________________________ 

 

; This routine removes an agent from a coalition and updates the coalition values 

 

to exit_coalition [ splitTurtle splitCoalition ] 

  ask turtle splitTurtle [ 

    ;show "exit coalition" 

    set priorValue         currentValue 

    set priorCoalition     currentCoalition 

    set currentValue       singletonValue 

    set currentCoalition   coalitionAdder 

    set newCoalition       0 

    set newValue           0 

    set coalitionSize      1 

    set color 99 

    ask my-links [die] 

  ] 

  update_coalition splitCoalition 

 

  reset_newValue_newCoalition 
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end 

;____________________________________________________________________________ 

 

; Designate coalitions with color and links 

to set_color_and_links [ coNo ] 

  ;show "set color and links" 

  ask turtles with [currentCoalition = coNo ][ 

    set color next-color 

      create-links-with other turtles with [currentCoalition = coNo] 

  ] 

  set next-color next-color + 7 

  if next-color > 125 [set next-color 15] 

  repeat 5 [layout-spring turtles links .2 7.5 1] 

end 

;____________________________________________________________________________ 

 

;; *************** FUNCTION ROUTINES *************************************** 

 

;; ********** RANDOM COALITION ROUTINE ************** 

; Create a random subgroup including the current turtle 

; Group size is randomly selected 

 

to create_random_group [ this-turtle ] 

  ;show "create_random_group" 

  reset_newValue_newCoalition 

  let tempCoalition max-agents + 8 

  ;let newGroup -1 

  let j -1 

  set next? true 

  ask turtle this-turtle [ 
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    set tempCoalition who + max-agents * 10 

    set newCoalition tempCoalition 

  ] 

 

  ;show "Check Sub-group" 

  ; select a random number of agents to create a subgroup with this-turtle 

  let groupSize random (max-agents / 2) + 1 

  ask n-of groupSize turtles with [newCoalition != tempCoalition]  [ 

      set newCoalition tempCoalition 

  ] 

 

  set groupSize count turtles with [newCoalition = tempCoalition] 

  ;set errorStr "Sub-group" 

  ;set errorStr (word errorStr " turtle: " this-turtle " size: " groupSize) 

  check_coalition tempCoalition 

 

  ; if the subgroup does not provide better imputation remove this-turtle 

  if next? and (groupSize > 1)[ 

    ;set errorStr "Exit-group" 

    ;set errorStr (word errorStr " turtle: " this-turtle " size: " groupSize) 

    ask turtle this-turtle [ set newCoalition -1] 

    check_coalition tempCoalition 

  ] 

 

  ; if subgroup does not provide better imputation try merging groups 

  if next? [ 

    ;set errorStr "Merge-group" 

    ;set errorStr (word errorStr " turtle: " this-turtle " size: " groupSize) 

    ask turtle this-turtle [ 

      set newCoalition tempCoalition 
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    ] 

    ask one-of turtles with [newCoalition != tempCoalition][ 

      set j newCoalition 

    ] 

    ask turtles with [currentCoalition = j][ 

      set newCoalition tempCoalition 

    ] 

    check_coalition tempCoalition 

  ] 

  reset_newValue_newCoalition 

end 

;; ********** JOIN COALITION ROUTINE ************** 

 

; Select two coalitions to possibly merge 

to join_coalition 

  ;show "join coalition" 

  let numberOfGroups random (total-coalitions ) 

  let tempCoalition max-coalitions + 2  ; ensure that it does not match any coalition 

  let coNo max-coalitions + 2 

  let sameGroup? true 

  let testNo 0 

  let testwho -1 

  ; randomly pick a turtle and use its coalition for possible merger 

  let x 0 

  let y 0 

 

  ;if (numberOfGroups < 2 and numberOfGroups > 0) [ set numberOfGroups 2 ] 

  let str "# of coalitions = " 

  set str (word str total-coalitions) 

  ;show str 
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  if (numberOfGroups = 1) [ set numberOfGroups 2 ] 

  while [x < numberOfGroups][ 

    set y count turtles with [newCoalition != tempCoalition] 

    ask one-of turtles with [newCoalition != tempCoalition][ 

      set newCoalition tempCoalition 

      set coNo currentCoalition 

      set testwho who 

    ] 

    ask turtles with [currentCoalition = coNo][ 

      set newCoalition tempCoalition 

    ] 

    set x (x + 1) 

  ] 

  let update? true 

  determine_newValue tempCoalition 

  ask turtles with [ newCoalition = tempCoalition][ 

    if (newValue <= currentValue) [ set update? false] 

  ] 

  if update? [ 

    ;show "update join coalition" 

    update_coalition tempCoalition 

  ] 

  reset_newValue_newCoalition 

end 

;____________________________________________________________________________ 

 

;; ********** REMOVE FROM COALITION ROUTINE ************** 

 

; This routine randomly selects an agent to test if the coalition is better off 

; removing the agent from the group (kick-out function) 
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to remove_from_coalition 

  ;show "remove from coalition routine" 

  let tempCoalition max-coalitions + 3 

  let splitTurtle   -1 

  let update? true 

  ; first check that there is a coalition of size greater than 1 

  if count turtles with [coalitionSize > 1] > 0 [ 

    ask one-of turtles with [coalitionSize > 1][ 

      set tempCoalition currentCoalition 

      set splitTurtle   who 

    ] 

    ask turtles with [currentCoalition = tempCoalition][ 

      if who != splitTurtle [ 

        set newCoalition tempCoalition 

      ] 

    ] 

    determine_newValue tempCoalition 

    ask turtles with [ newCoalition = tempCoalition ][ 

      if newValue <= currentValue [ set update? false ] 

   ] 

    if update? [ 

      exit_coalition splitTurtle tempCoalition ] 

    reset_newValue_newCoalition 

  ] 

end 

;____________________________________________________________________________ 

;; *********** TRIO COALITION ROUTINE ************ 

 

; This routine randomly select three agents to create a new coalition. 
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; If the all agents of the pair are better off, each departs from current coalition 

; to form a new coalition 

 

to trio_coalition 

  ;show "trio coalition" 

  let x 0 

  let coSize random (max-agents - 2) 

  let coalitionList [] 

  let coalList [] 

  let tempCoalition max-coalitions + 4 

  let ncTemp max-agents + 14 

  let update? true 

 

  ; select the number of agents for the new coalition (between 2 and max-agents) 

  set coSize + 2 

  ; randomly choose agents and place in a list 

  while [x < coSize][ 

    set coalitionList lput (random max-agents) coalitionList 

    set x x + 1 

  ] 

  set coalitionList remove-duplicates coalitionList          ;remove duplicates from the list 

  ; cycle thru each agent listed and set newCoalition for testing 

  foreach coalitionList [ 

    a -> ask turtle a [ 

      set newCoalition tempCoalition 

      set coalList lput currentCoalition coalList 

    ] 

  ] 

  ; determine if the new coalition is better 

  determine_newValue tempCoalition 
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  ask turtles with [newCoalition = tempCoalition][ 

    if newValue <= currentValue [ set update? false ] 

  ] 

 

  if update?[ 

    update_coalition tempCoalition                           ; update new coalition 

    ; update coalitions that had agents removed to reflect new coalition 

    set coalList remove-duplicates coalList 

    foreach coalList [ 

      a -> ask turtles with [currentCoalition = a][ 

        set newCoalition ncTemp 

      ] 

      update_coalition ncTemp 

      set ncTemp ncTemp + 10 

    ] 

 

  ] 

  reset_newValue_newCoalition 

end 

;____________________________________________________________________________ 

;; ********** PAIR COALITION ROUTINE ************** 

 

; This routine randomly selects two agents to create a new coalition. 

; If the both agents of the pair are better off, each departs from current coalition 

; to form a new coalition 

 

 

to pair_coalition 

  ;show "pair coalition routine" 

  let t1 -1 



145 
 

  let t2 -1 

  let tempCoalition max-coalitions + 5 

  let oldCoalitionT1 -1 

  let oldCoalitionT2 -1 

  let update? true 

  ask one-of turtles [ 

    set t1 who 

    set newCoalition tempCoalition 

    set oldCoalitionT1 currentCoalition 

  ] 

  ask one-of turtles with [who != t1][ 

    set t2 who 

    set newCoalition tempCoalition 

    set oldCoalitionT2 currentCoalition 

  ] 

  determine_newValue tempCoalition 

  ask turtle t1 [ 

    if newValue <= currentValue [ set update? false ] 

  ] 

  ask turtle t2 [ 

    if newValue <= currentValue [ set update? false ] 

  ] 

  if update?[ 

 

    let splitCoalition 0 

    let coSize 0 

    let nCtemp max-agents + 15 

    let nCtemp2 max-agents + 25 

 

    update_coalition tempCoalition            ; update pair to new coalition 
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    ask turtles with [currentCoalition = oldCoalitionT1][ 

      set newCoalition nCtemp 

    ] 

 

    ifelse (oldCoalitionT1 = oldCoalitionT2)[ 

      ask turtles with [currentCoalition = oldCoalitionT2][ 

        set newCoalition nCtemp 

      ] 

      update_coalition nCtemp 

    ][ 

      ask turtles with [currentCoalition = oldCoalitionT2][ 

        set newCoalition nCtemp2 

      ] 

      update_coalition nCtemp 

      update_coalition nCtemp2 

    ] 

  ] 

  reset_newValue_newCoalition 

end 

;____________________________________________________________________________ 

 

;; ********** DEFECT FROM COALITION ROUTINE ************** 

 

; This routines randomly selects an agent to test whether to join a different, randomly selected 

; coalition 

to defect_coalition 

  ;show "defect coalition routine" 

  let t1 -1 

  let t1Coalition 0 
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  let t2Coalition 0 

  let tempCoalition max-coalitions + 6 

  let update? false 

  reset_newValue_newCoalition 

 

  ; select an agent 

  ask one-of turtles [ 

    set t1 who 

    set t1Coalition currentCoalition 

    set newCoalition tempCoalition 

  ] 

  ; select an alternate coalition to join 

  if count turtles with [currentCoalition != t1Coalition] > 0 [ 

    ask one-of turtles with [currentCoalition != t1Coalition][ 

      set t2Coalition currentCoalition 

      set newCoalition tempCoalition 

    ] 

    ; check if new coalition is improves value for members 

    determine_newValue tempCoalition 

    ask turtles with [ currentCoalition = t2Coalition ][ 

      if newValue <= currentValue [ set update? false ] 

    ] 

    ask turtle t1 [ 

      if newValue <= currentValue [ set update? false ] 

    ] 

 

 

    if update? [ 

      update_coalition tempCoalition 

      ask turtles with [ currentCoalition = t1Coalition ] [ set newCoalition t1Coalition ] 
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      update_coalition t1Coalition 

    ] 

  ] 

  reset_newValue_newCoalition 

end 

 

 

;; ********** SPLIT COALITION ROUTINE ************** 

 

; This routine breaks a group into subgroups and examines if either subgroup is better off 

to split_coalition 

  ;show "split coalition routine" 

  let continue? true 

  let counter 0 

  let tempCoalition  max-coalitions + 7 

  let temp2Coalition max-coalitions + 17 

  let t1Coalition 0 

  let tempSize 0 

  let g1 true 

  let g2 true 

 

  ; select a coalition of size > 2 

  if count turtles with [ coalitionSize > 2 ] > 0 [ 

    ask one-of turtles with [ coalitionSize > 2 ][ 

      set t1Coalition currentCoalition 

      set tempSize coalitionSize 

    ] 

 

    ; split the group using a uniform random number 

    ; randomly select turtles for group 1 until the number 
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    ; generated is greater than 0.5 all others are in group 2 

 

    ask turtles with [currentCoalition = t1Coalition ][ 

      ifelse (continue?) and (random-float 1 < 0.5) [ 

        set newCoalition tempCoalition 

        set counter + 1 

      ][ 

        set continue? false 

      ] 

    ] 

 

 

    ; if the split is greater than 0 but smaller than the original coalition size 

    ; check the split for coalition improvement 

  ] 

  ; did the group split into 2? 

  if (counter > 0) and (tempSize - counter > 0) [ 

    ;show "split group" 

    if counter <= 0 [show "counter error"] 

    if tempSize - counter <= 0 [show "tempSize error"] 

    ask turtles with [ currentCoalition = t1Coalition][ 

      if newCoalition != tempCoalition [ set newCoalition temp2Coalition ] 

    ] 

    ;determine whether the coalition split is beneficial to either group 

    determine_newValue tempCoalition 

    ask turtles with [newCoalition = tempCoalition][ 

      if newValue <= currentValue [ set g1 false ] 

    ] 

    determine_newValue temp2Coalition 

    ask turtles with [newCoalition = temp2Coalition][ 
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      if newValue <= currentValue [ set g2 false ] 

    ] 

 

    ; if there is a benefit, split the groups into two coalitions 

    if (g1) or (g2) [ 

      ;show "update split coalition" 

      ask turtles with [newCoalition = tempCoalition][ 

        ask my-links [ die ] 

        ;show "group 1 turtle" 

      ] 

      ;set_color_and_links tempCoalition 

      update_coalition tempCoalition 

      ;show "Group 2" 

      ask turtles with [currentCoalition = temp2Coalition][ 

        ask my-links [ die ] 

        ;show "group 2 turtle" 

      ] 

      ;set_color_and_links temp2Coalition 

      update_coalition temp2Coalition 

    ] 

 

    reset_newValue_newCoalition 

  ] 

end 

 

 

;; ********** INDIVIDUAL RATIONALITY ROUTINE ************** 

 

; This routines tests for individual rationality. All agents check the payoff in their current coalition 

; to their individual value. If the coalition value is lower, they exit the coalition 
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to single_coalition 

  ;show "single coalition routine" 

  ask turtles with [coalitionSize > 1][ 

    if singletonValue > currentValue [ 

      rearrange_single who currentCoalition 

    ] 

  ] 

end 

 

;; ************************************* METRIC FUNCTIONS 
**************************************** 

 

; This routine gathers metrics for evaluation 

to gather_metrics 

  let avg 0 

  let cv 0 

  let tcv 0 

  let tc 0 

  set coalition-list [] 

  let i 0 

  while [i < max-agents][ 

    ask turtle i[ 

      set tcv tcv + currentValue 

      if currentValue > max-agent-value [set max-agent-value currentValue]     ; max imputation 

      if member? currentCoalition coalition-list = false [ 

        set tc tc + 1 

      ] 

      set coalition-list lput currentCoalition coalition-list 

    ] 

    set i i + 1 
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  ] 

  set total-coalitions tc 

  set total-coalition-value tcv 

  set avg-agent-value total-coalition-value / max-agents 

end 

 

; Make the coalition list readable 

to convert_coalition_list 

  set final-coalition-list [] 

  let temp-coalition-list [] 

  let i 0 

  let nextPosition 0 

  while [i < max-agents][ 

    ifelse member? (item i coalition-list) temp-coalition-list [ 

      set final-coalition-list lput (item (position (item i coalition-list) coalition-list) final-coalition-list) final-
coalition-list 

    ][ 

      set temp-coalition-list lput (item i coalition-list) temp-coalition-list 

      set final-coalition-list lput nextPosition final-coalition-list 

      set nextPosition nextPosition + 1 

    ] 

    set i i + 1 

  ] 

  ;show final-coalition-list 

end 
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