131 research outputs found

    Evaluation of autoantibodies to common and neuronal cell antigens in Chronic Fatigue Syndrome

    Get PDF
    People with chronic fatigue syndrome (CFS) suffer from multiple symptoms including fatigue, impaired memory and concentration, unrefreshing sleep and musculoskeletal pain. The exact causes of CFS are not known, but the symptom complex resembles that of several diseases that affect the immune system and autoantibodies may provide clues to the various etiologies of CFS. We used ELISA, immunoblot and commercially available assays to test serum from subjects enrolled in a physician-based surveillance study conducted in Atlanta, Georgia and a population-based study in Wichita, Kansas for a number of common autoantibodies and antibodies to neuron specific antigens. Subsets of those with CFS had higher rates of antibodies to microtubule-associated protein 2 (MAP2) (p = 0.03) and ssDNA (p = 0.04). There was no evidence of higher rates for several common nuclear and cellular antigens in people with CFS. Autoantibodies to specific host cell antigens may be a useful approach for identifying subsets of people with CFS, identify biomarkers, and provide clues to CFS etiologies

    Comparison of target labeling methods for use with Affymetrix GeneChips

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several different commercial one-cycle labeling kits are available for preparation of the target for use with the Affymetrix GeneChip platform. However, there have been no evaluations of these different kits to determine if comparable results were generated. We report on the cRNA target synthesis, labeling efficiency and hybridization results using the One-Cycle Target Labeling Assayâ„¢ (Affymetrix), the BioArray RNA Amplification and Labeling Systemâ„¢ (Enzo Life Sciences), and the Superscript RNA Amplification System (Invitrogen Life Technologies).</p> <p>Results</p> <p>The only notable difference between kits was in the yield of cRNA target synthesized during in vitro transcription, where the BioArray assay had to be repeated several times in order to have sufficient target. However, each kit resulted in comparable signal and detection calls when hybridized to the Affymetrix GeneChip.</p> <p>Conclusion</p> <p>These 3 one-cycle labeling kits produce comparable hybridization results. This provides users with several kit options and flexibility when using the Affymetrix system.</p

    A method for improving SELDI-TOF mass spectrometry data quality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) is a powerful tool for rapidly generating high-throughput protein profiles from a large number of samples. However, the events that occur between the first and last sample run are likely to introduce technical variation in the results.</p> <p>Methods</p> <p>We fractionated and analyzed quality control and investigational serum samples on 3 Protein Chips and used statistical methods to identify poor-quality spectra and to identify and reduce technical variation.</p> <p>Results</p> <p>Using diagnostic plots, we were able to visually depict all spectra and to identify and remove those that were of poor quality. We detected a technical variation associated with when the samples were run (referred to as batch effect) and corrected for this variation using analysis of variance. These corrections increased the number of peaks that were reproducibly detected.</p> <p>Conclusion</p> <p>By removing poor-quality, outlier spectra, we were able to increase peak detection, and by reducing the variance introduced when samples are processed and analyzed in batches, we were able to increase the reproducibility of peak detection.</p

    Laboratory methods to improve SELDI peak detection and quantitation

    Get PDF
    Abstract Background Protein profiling with surface-enhanced laser desorption-ionisation time-of-flight mass spectrometry (SELDI-TOF MS) is a promising approach for biomarker discovery. Some candidate biomarkers have been identified using SELDI-TOF, but validation of these can be challenging because of technical parameters that effect reproducibility. Here we describe steps to improve the reproducibility of peak detection. Methods SELDI-TOF mass spectrometry was performed using a system manufactured by Ciphergen Biosystems along with their ProteinChip System. Serum from 10 donors was pooled and used for all experiments. Serum was fractionated with Expression Difference Mapping kit-Serum Fractionation from the same company and applied to three different ProteinChips. The fractionations were run over a one month period to examine the contribution of sample batch and time to peak detection variability. Spectra were processed and peaks detected using the Ciphergen Express software and variance measured. Results Experimental parameters specific to the serum fraction and ProteinChip, including spot protocols (laser intensity and detector sensitivity) were optimized to decrease peak detection variance. Optimal instrument settings, regular calibration along with controlled sample handling and processing nearly doubled the number of peaks detected and decreased intensity variance. Conclusion This report assesses the variation across fractionated sera processed over a one-month period. The optimizations reported decreased the variance and increased the number of peaks detected.</p

    Integration of gene expression, clinical, and epidemiologic data to characterize Chronic Fatigue Syndrome

    Get PDF
    BACKGROUND: Chronic fatigue syndrome (CFS) has no diagnostic clinical signs or diagnostic laboratory abnormalities and it is unclear if it represents a single illness. The CFS research case definition recommends stratifying subjects by co-morbid conditions, fatigue level and duration, or functional impairment. But to date, this analysis approach has not yielded any further insight into CFS pathogenesis. This study used the integration of peripheral blood gene expression results with epidemiologic and clinical data to determine whether CFS is a single or heterogeneous illness. RESULTS: CFS subjects were grouped by several clinical and epidemiological variables thought to be important in defining the illness. Statistical tests and cluster analysis were used to distinguish CFS subjects and identify differentially expressed genes. These genes were identified only when CFS subjects were grouped according to illness onset and the majority of genes were involved in pathways of purine and pyrimidine metabolism, glycolysis, oxidative phosphorylation, and glucose metabolism. CONCLUSION: These results provide a physiologic basis that suggests CFS is a heterogeneous illness. The differentially expressed genes imply fundamental metabolic perturbations that will be further investigated and illustrates the power of microarray technology for furthering our understanding CFS

    Inclusion of the glucocorticoid receptor in a hypothalamic pituitary adrenal axis model reveals bistability

    Get PDF
    BACKGROUND: The body's primary stress management system is the hypothalamic pituitary adrenal (HPA) axis. The HPA axis responds to physical and mental challenge to maintain homeostasis in part by controlling the body's cortisol level. Dysregulation of the HPA axis is implicated in numerous stress-related diseases. RESULTS: We developed a structured model of the HPA axis that includes the glucocorticoid receptor (GR). This model incorporates nonlinear kinetics of pituitary GR synthesis. The nonlinear effect arises from the fact that GR homodimerizes after cortisol activation and induces its own synthesis in the pituitary. This homodimerization makes possible two stable steady states (low and high) and one unstable state of cortisol production resulting in bistability of the HPA axis. In this model, low GR concentration represents the normal steady state, and high GR concentration represents a dysregulated steady state. A short stress in the normal steady state produces a small perturbation in the GR concentration that quickly returns to normal levels. Long, repeated stress produces persistent and high GR concentration that does not return to baseline forcing the HPA axis to an alternate steady state. One consequence of increased steady state GR is reduced steady state cortisol, which has been observed in some stress related disorders such as Chronic Fatigue Syndrome (CFS). CONCLUSION: Inclusion of pituitary GR expression resulted in a biologically plausible model of HPA axis bistability and hypocortisolism. High GR concentration enhanced cortisol negative feedback on the hypothalamus and forced the HPA axis into an alternative, low cortisol state. This model can be used to explore mechanisms underlying disorders of the HPA axis

    The economic impact of chronic fatigue syndrome

    Get PDF
    BACKGROUND: Chronic fatigue syndrome (CFS) is a chronic incapacitating illness that affects between 400,000 and 800,000 Americans. Despite the disabling nature of this illness, scant research has addressed the economic impact of CFS either on those affected or on the national economy. METHODS: We used microsimulation methods to analyze data from a surveillance study of CFS in Wichita, Kansas, and derive estimates of productivity losses due to CFS. RESULTS: We estimated a 37% decline in household productivity and a 54% reduction in labor force productivity among people with CFS. The annual total value of lost productivity in the United States was 9.1billion,whichrepresentsabout9.1 billion, which represents about 20,000 per person with CFS or approximately one-half of the household and labor force productivity of the average person with this syndrome. CONCLUSION: Lost productivity due to CFS was substantial both on an individual basis and relative to national estimates for other major illnesses. CFS resulted in a national productivity loss comparable to such losses from diseases of the digestive, immune and nervous systems, and from skin disorders. The extent of the burden indicates that continued research to determine the cause and potential therapies for CFS could provide substantial benefit both for individual patients and for the nation

    Exercise responsive genes measured in peripheral blood of women with Chronic Fatigue Syndrome and matched control subjects

    Get PDF
    BACKGROUND: Chronic fatigue syndrome (CFS) is defined by debilitating fatigue that is exacerbated by physical or mental exertion. To search for markers of CFS-associated post-exertional fatigue, we measured peripheral blood gene expression profiles of women with CFS and matched controls before and after exercise challenge. RESULTS: Women with CFS and healthy, age-matched, sedentary controls were exercised on a stationary bicycle at 70% of their predicted maximum workload. Blood was obtained before and after the challenge, total RNA was extracted from mononuclear cells, and signal intensity of the labeled cDNA hybridized to a 3800-gene oligonucleotide microarray was measured. We identified differences in gene expression among and between subject groups before and after exercise challenge and evaluated differences in terms of Gene Ontology categories. Exercise-responsive genes differed between CFS patients and controls. These were in genes classified in chromatin and nucleosome assembly, cytoplasmic vesicles, membrane transport, and G protein-coupled receptor ontologies. Differences in ion transport and ion channel activity were evident at baseline and were exaggerated after exercise, as evidenced by greater numbers of differentially expressed genes in these molecular functions. CONCLUSION: These results highlight the potential use of an exercise challenge combined with microarray gene expression analysis in identifying gene ontologies associated with CFS

    Bioelectronic DNA detection of human papillomaviruses using eSensorâ„¢: a model system for detection of multiple pathogens

    Get PDF
    BACKGROUND: We used human papillomaviruses (HPV) as a model system to evaluate the utility of a nucleic acid, hybridization-based bioelectronic DNA detection platform (eSensorâ„¢) in identifying multiple pathogens. METHODS: Two chips were spotted with capture probes consisting of DNA oligonucleotide sequences specific for HPV types. Electrically conductive signal probes were synthesized to be complementary to a distinct region of the amplified HPV target DNA. A portion of the HPV L1 region that was amplified by using consensus primers served as target DNA. The amplified target was mixed with a cocktail of signal probes and added to a cartridge containing a DNA chip to allow for hybridization with complementary capture probes. RESULTS: Two bioelectric chips were designed and successfully detected 86% of the HPV types contained in clinical samples. CONCLUSIONS: This model system demonstrates the potential of the eSensor platform for rapid and integrated detection of multiple pathogens

    Improvement of Long COVID symptoms over one year.

    Get PDF
    IMPORTANCE: Early and accurate diagnosis and treatment of Long COVID, clinically known as post-acute sequelae of COVID-19 (PASC), may mitigate progression to chronic diseases such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Our objective was to determine the utility of the DePaul Symptom Questionnaire (DSQ) to assess the frequency and severity of common symptoms of ME/CFS, to diagnose and monitor symptoms in patients with PASC. METHODS: This prospective, observational cohort study enrolled 185 people that included 34 patients with PASC that had positive COVID-19 test and persistent symptoms of \u3e3 months and 151 patients diagnosed with ME/CFS. PASC patients were followed over 1 year and responded to the DSQ at baseline and 12 months. ME/CFS patients responded to the DSQ at baseline and 1 year later. Changes in symptoms over time were analyzed using a fixed-effects model to compute difference-in-differences estimates between baseline and 1-year follow-up assessments. PARTICIPANTS: Patients were defined as having PASC if they had a previous positive COVID-19 test, were experiencing symptoms of fatigue, post-exertional malaise, or other unwellness for at least 3 months, were not hospitalized for COVID-19, had no documented major medical or psychiatric diseases prior to COVID-19, and had no other active and untreated disease processes that could explain their symptoms. PASC patients were recruited in 2021. ME/CFS patients were recruited in 2017. RESULTS: At baseline, patients with PASC had similar symptom severity and frequency as patients with ME/CFS and satisfied ME/CFS diagnostic criteria. ME/CFS patients experienced significantly more severe unrefreshing sleep and flu-like symptoms. Five symptoms improved significantly over the course of 1 year for PASC patients including fatigue, post-exertional malaise, brain fog, irritable bowel symptoms and feeling unsteady. In contrast, there were no significant symptom improvements for ME/CFS patients. CONCLUSION AND RELEVANCE: There were considerable similarities between patients with PASC and ME/CFS at baseline. However, symptoms improved for PASC patients over the course of a year but not for ME/CFS patients. PASC patients with significant symptom improvement no longer met ME/CFS clinical diagnostic criteria. These findings indicate that the DSQ can be used to reliably assess and monitor PASC symptoms
    • …
    corecore