8 research outputs found

    Determining Threshold Instrumental Resolutions for Resolving the Velocity‐Space Signature of Ion Landau Damping

    No full text
    Unraveling the physics of the entire turbulent cascade of energy in space and astrophysical plasmas from the injection of energy at large scales to the dissipation of that energy into plasma heat at small scales, represents an overarching, open question in heliophysics and astrophysics. The fast cadence and high phase-space resolution of particle velocity distribution measurements on modern spacecraft missions, such as the recently launched Parker Solar Probe, presents exciting new opportunities for identifying turbulent dissipation mechanisms using in situ measurements of the particle velocity distributions and electromagnetic fields. Here we demonstrate how to use data from kinetic numerical simulations of plasma turbulence to create synthetic spacecraft data; this data set can then be used to determine instrumental requirements to identify specific particle energization mechanisms. Using such synthetic data, downsampled to the velocity phase-space resolution available from the plasma instruments on several past and present missions, we compute the resulting velocity-space signature of ion Landau damping using the recently developed Field-Particle Correlation (FPC) technique. We find that only recent missions have sufficiently fine phase-space resolution to resolve the characteristic resonant features of the ion Landau damping signature. Coupled with numerical determinations of the velocity-space signatures of different proposed particle energization mechanisms, this strategy enables the specification of instrumental capabilities required to achieve science goals on the topic of plasma heating and particle acceleration in turbulent heliospheric plasmas. © 2021. American Geophysical Union. All Rights Reserved.6 month embargo; published online: 10 May 2021This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Inferred Linear Stability of Parker Solar Probe Observations Using One- And Two-component Proton Distributions

    No full text
    The hot and diffuse nature of the Sun's extended atmosphere allows it to persist in non-equilibrium states for long enough that wave-particle instabilities can arise and modify the evolution of the expanding solar wind. Determining which instabilities arise, and how significant a role they play in governing the dynamics of the solar wind, has been a decades-long process involving in situ observations at a variety of radial distances. With new measurements from the Parker Solar Probe (PSP), we can study what wave modes are driven near the Sun, and calculate what instabilities are predicted for different models of the underlying particle populations. We model two hours-long intervals of PSP/SPAN-i measurements of the proton phase-space density during the PSP's fourth perihelion with the Sun using two commonly used descriptions for the underlying velocity distribution. The linear stability and growth rates associated with the two models are calculated and compared. We find that both selected intervals are susceptible to resonant instabilities, though the growth rates and kinds of modes driven unstable vary depending on whether the protons are modeled using one or two components. In some cases, the predicted growth rates are large enough to compete with other dynamic processes, such as the nonlinear turbulent transfer of energy, in contrast with relatively slower instabilities at larger radial distances from the Sun. © 2021. The American Astronomical Society. All rights reserved..Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Strong Perpendicular Velocity-space Diffusion in Proton Beams Observed by Parker Solar Probe

    Get PDF
    International audienceAbstract The SWEAP instrument suite on Parker Solar Probe (PSP) has detected numerous proton beams associated with coherent, circularly polarized, ion-scale waves observed by PSP’s FIELDS instrument suite. Measurements during PSP Encounters 4−8 revealed pronounced complex shapes in the proton velocity distribution functions (VDFs), in which the tip of the beam undergoes strong perpendicular diffusion, resulting in VDF level contours that resemble a “hammerhead.” We refer to these proton beams, with their attendant “hammerhead” features, as the ion strahl. We present an example of these observations occurring simultaneously with a 7 hr ion-scale wave storm and show results from a preliminary attempt at quantifying the occurrence of ion-strahl broadening through three-component ion VDF fitting. We also provide a possible explanation of the ion perpendicular scattering based on quasilinear theory and the resonant scattering of beam ions by parallel-propagating, right circularly polarized, fast magnetosonic/whistler waves
    corecore