105 research outputs found

    Reusability of filtering facepiece respirators after decontamination through drying and germicidal UV irradiation.

    Get PDF
    During pandemics, such as the SARS-CoV-2, filtering facepiece respirators plays an essential role in protecting healthcare personnel. The recycling of respirators is possible in case of critical shortage, but it raises the question of the effectiveness of decontamination as well as the performance of the reused respirators. Disposable respirators were subjected to ultraviolet germicidal irradiation (UVGI) treatment at single or successive doses of 60 mJ/cm <sup>2</sup> after a short drying cycle (30 min, 70°C). The germicidal efficacy of this treatment was tested by spiking respirators with two staphylococcal bacteriophages (vB_HSa_2002 and P66 phages). The respirator performance was investigated by the following parameters: particle penetration (NaCl aerosol, 10-300 nm), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry and mechanical tensile tests. No viable phage particles were recovered from any of the respirators after decontamination (log reduction in virus titre >3), and no reduction in chemical or physical properties (SEM, particle penetrations <5%-6%) were observed. Increasing the UVGI dose 10-fold led to chemical alterations of the respirator filtration media (FTIR) but did not affect the physical properties (particle penetration), which was unaltered even at 3000 mJ/cm <sup>2</sup> (50 cycles). When respirators had been used by healthcare workers and undergone decontamination, they had particle penetration significantly greater than never donned respirators. This decontamination procedure is an attractive method for respirators in case of shortages during a SARS pandemic. A successful implementation requires a careful design and particle penetration performance control tests over the successive reuse cycles

    Allele Intersection Analysis: A Novel Tool for Multi Locus Sequence Assignment in Multiply Infected Hosts

    Get PDF
    Wolbachia are wide-spread, endogenous α-Proteobacteria of arthropods and filarial nematodes. 15–75% of all insect species are infected with these endosymbionts that alter their host's reproduction to facilitate their spread. In recent years, many insect species infected with multiple Wolbachia strains have been identified. As the endosymbionts are not cultivable outside living cells, strain typing relies on molecular methods. A Multi Locus Sequence Typing (MLST) system was established for standardizing Wolbachia strain identification. However, MLST requires hosts to harbour individual and not multiple strains of supergroups without recombination. This study revisits the applicability of the current MLST protocols and introduces Allele Intersection Analysis (AIA) as a novel approach. AIA utilizes natural variations in infection patterns and allows correct strain assignment of MLST alleles in multiply infected host species without the need of artificial strain segregation. AIA identifies pairs of multiply infected individuals that share Wolbachia and differ in only one strain. In such pairs, the shared MLST sequences can be used to assign alleles to distinct strains. Furthermore, AIA is a powerful tool to detect recombination events. The underlying principle of AIA may easily be adopted for MLST approaches in other uncultivable bacterial genera that occur as multiple strain infections and the concept may find application in metagenomic high-throughput parallel sequencing projects

    Inequitable walking conditions among older people: examining the interrelationship of neighbourhood socio-economic status and urban form using a comparative case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Supportive neighbourhood walking conditions are particularly important for older people as they age and who, as a group, prefer walking as a form of physical activity. Urban form and socio-economic status (SES) can influence neighbourhood walking behaviour. The objectives of this study were: a) to examine how urban form and neighbourhood SES inter-relate to affect the experiences of older people who walk in their neighbourhoods; b) to examine differences among neighbourhood stakeholder key informant perspectives on socio-political processes that shape the walkability of neighbourhood environments.</p> <p>Methods</p> <p>An embedded comparative case study examined differences among four Ottawa neighbourhoods that were purposefully selected to provide contrasts on urban form (inner-urban versus suburban) and SES (higher versus lower). Qualitative data collected from 75 older walkers and 19 neighbourhood key informants, as well as quantitative indicators were compared on the two axes of urban form and SES among the four neighbourhoods.</p> <p>Results and discussion</p> <p>Examining the inter-relationship of neighbourhood SES and urban form characteristics on older people's walking experiences indicated that urban form differences were accentuated positively in higher SES neighbourhoods and negatively in lower SES neighbourhoods. Older people in lower SES neighbourhoods were more affected by traffic hazards and more reliant on public transit compared to their higher SES counterparts. In higher SES neighbourhoods the disadvantages of traffic in the inner-urban neighbourhood and lack of commercial destinations in the suburban neighbourhood were partially offset by other factors including neighbourhood aesthetics. Key informant descriptions of the socio-political process highlighted how lower SES neighbourhoods may face greater challenges in creating walkable places. These differences pertained to the size of neighbourhood associations, relationships with political representatives, accessing information and salient neighbourhood association issues. Findings provide evidence of inequitable walking environments.</p> <p>Conclusion</p> <p>Future research on walking must consider urban form-SES inter-relationships and further examine the equitable distribution of walking conditions as well as the socio-political processes driving these conditions. There is a need for municipal governments to monitor differences in walking conditions among higher and lower SES neighbourhoods, to be receptive to the needs of lower SES neighbourhood and to ensure that policy decisions are taken to address inequitable walking conditions.</p

    Insights into household transmission of SARS-CoV-2 from a population-based serological survey

    Get PDF
    Understanding the risk of infection from household- and community-exposures and the transmissibility of asymptomatic infections is critical to SARS-CoV-2 control. Limited previous evidence is based primarily on virologic testing, which disproportionately misses mild and asymptomatic infections. Serologic measures are more likely to capture all previously infected individuals. We apply household transmission models to data from a cross-sectional, household-based population serosurvey of 4,534 people ≥5 years from 2,267 households enrolled April-June 2020 in Geneva, Switzerland. We found that the risk of infection from exposure to a single infected household member aged ≥5 years (17.3%,13.7-21.7) was more than three-times that of extra-household exposures over the first pandemic wave (5.1%,4.5-5.8). Young children had a lower risk of infection from household members. Working-age adults had the highest extra-household infection risk. Seropositive asymptomatic household members had 69.4% lower odds (95%CrI,31.8-88.8%) of infecting another household member compared to those reporting symptoms, accounting for 14.5% (95%CrI, 7.2-22.7%) of all household infections

    Distribution of low quality filtering facepiece respirators during the COVID-19 pandemic: an independent analysis of the situation in Switzerland.

    Get PDF
    SARS-CoV-2 is a respiratory virus. Transmission occurs by droplets, contact and aerosols. In medical settings, filtering facepiece (FFP) respirators are recommended for use by personnel exposed to aerosol-generating procedures. During the COVID-19 pandemic, the demand for FFP respirators exceeded their supply worldwide and low-quality products appeared on the market, potentially putting healthcare workers at risk. To raise awareness about variations in quality of imported FFP respirators in Switzerland during the COVID-19 pandemic, to draw attention to the current directives regulating the market launch of FFP respirators in Switzerland, to provide practical support in identifying suspicious products or documents and, finally, to offer strategies aimed at reducing the distribution of low-quality FFP respirators in the future. Three Swiss laboratories, Spiez Laboratory and Unisant&amp;eacute; in partnership with TOXpro SA individually set up testing procedures to evaluate aerosol penetration and fit testing of FFP respirators imported into Switzerland during COVID-19 pandemic. Additionally, Spiez Laboratory visually inspected the products, examined the certification documents and crosschecked the product information with international databases. Between 31 March and 15 June 2020, 151 FFP respirators were analysed. The initial assessment performed before testing allowed a reduction of up to 35% in the number of FFP respirators sent to Spiez Laboratory for evaluation, for which product information found to be faulty. After filtration efficiency evaluation and fit testing, 52% and 60% of all products tested by Spiez Laboratory and Unisant&amp;eacute;-TOXpro SA, respectively, did not meet the minimum performance requirements established independently by the three Swiss laboratories. The demand for FFP respirators exceeded the supply capacity from established suppliers of the Swiss market. New production and import channels emerged, as did the number of poor-quality FFP respirators. FFP respirators remaining in stocks should be checked for conformity before being used, or eliminated and replaced if quality does not meet standards

    Probable aerosol transmission of SARS-CoV-2 in a poorly ventilated courtroom.

    No full text
    There is increasing evidence of SARS-CoV-2 transmission via aerosol; the number of cases of transmission via this route reported in the literature remains however limited. This study examines a case of clustering that occurred in a courtroom, in which 5 of the 10 participants were tested positive within days of the hearing. Ventilation loss rates and dispersion of fine aerosols were measured through CO &lt;sub&gt;2&lt;/sub&gt; injections and lactose aerosol generation. Emission rate and influencing parameters were then computed using a well-mixed dispersion model. The emission rate from the index case was estimated at 130 quanta h &lt;sup&gt;-1&lt;/sup&gt; (interquartile (97-155 quanta h &lt;sup&gt;-1&lt;/sup&gt; ). Measured lactose concentrations in the room were found relatively homogenous (n = 8, mean 336 µg m &lt;sup&gt;-3&lt;/sup&gt; , SD = 39 µg m &lt;sup&gt;-3&lt;/sup&gt; ). Air renewal was found to play an important role for event durations greater than 0.5 h and loss rate below 2-3 h &lt;sup&gt;-1&lt;/sup&gt; . The estimated emission rate suggests a high viral load in the index case and/or a high SARS-CoV-2 infection coefficient. High probabilities of infection in similar indoor situations are related to unfavorable conditions of ventilation, emission rate, and event durations. Source emission control appears essential to reduce aerosolized infection in events lasting longer than 0.5 h

    A proposed synergetic mechanism for metal fume fever involving ZnO and Fe<sub>3</sub>O<sub>4</sub> nanoparticles.

    No full text
    Metal fumes fever (MFF) is an inflammatory condition, whose mechanism is yet unclear, associated with the inhalation of metal fumes, particularly zinc. In this study we investigate experimentally the hypothesis of a two-step mechanism of MFF onset: (1) the photocatalytic production of airborne hydrogen peroxide (H &lt;sub&gt;2&lt;/sub&gt; O &lt;sub&gt;2&lt;/sub&gt; ) via ZnO and (2) the production of hydroxyl radicals (HOׄ) through Fenton reaction via magnetite (Fe &lt;sub&gt;3&lt;/sub&gt; O &lt;sub&gt;4&lt;/sub&gt; ) nanoparticles. Photocatalysis and Fenton reaction products were measured using a multiscattering-enhanced absorbance device and assessing the degradation of bromophenol blue with microplate photometry, respectively. We observed that in the presence of UV, ZnO produces 3 to 4-times more H &lt;sub&gt;2&lt;/sub&gt; O &lt;sub&gt;2&lt;/sub&gt; than UV alone or that non-UV irradiated ZnO. In the presence of biologically-relevant ligands, we also measured a Fenton reaction at physiological pH with either Fe(II), Fe(III) or Fe &lt;sub&gt;3&lt;/sub&gt; O &lt;sub&gt;4&lt;/sub&gt; nanoparticles. Our results support the hypothesis of a two-step mechanism of MFF onset, in which the prior presence of Fe in the lungs exacerbates the oxidative stress, triggered by the photocatalysis of ZnO, a situation that could occurs when welding galvanized steel. More broadly, this raises the question of the role of the Fenton mechanism in respiratory exposure to metal particles and its possible contribution to other lung diseases
    corecore