64 research outputs found

    Parity oscillations of Kondo temperature in a single molecule break junction

    Full text link
    We study the Kondo temperature (TKT_K) of a single molecule break junction. By employing a numerical renormalization group calculations we have found that TKT_K depends dramatically upon the position of the molecule in the wire formed between the contacts. We show that TKT_K exhibits strong \emph{oscillations} when the parity of the left {and/or} right number of atomic sites (NL,NRN_L,N_R) is changed. For a given set of parameters, the maximum value of TKT_K occurs for (odd,oddodd,odd) combination, while its minimum values is observed for (even,eveneven,even). These oscillations are fully understood in terms of the effective hybridization function.Comment: 4 pages, 5 figure

    Kondo screening suppression by spin-orbit interaction in quantum dots

    Full text link
    We study the transport properties of a quantum dot embedded in an Aharonov-Bohm ring in the presence of spin-orbit interactions. Using a numerical renormalization group analysis of the system in the Kondo regime, we find that the competition of Aharonov-Bohm and spin-orbit dynamical phases induces a strong suppression of the Kondo state singlet, somewhat akin to an effective intrinsic magnetic field in the system. This effective field breaks the spin degeneracy of the localized state and produces a finite magnetic moment in the dot. By introducing an {\em in-plane} Zeeman field we show that the Kondo resonance can be fully restored, reestablishing the spin singlet and a desired spin filtering behavior in the Kondo regime, which may result in full spin polarization of the current through the ring.Comment: 4 pages, 4 figure

    Capacitive interactions and Kondo effect tuning in double quantum impurity systems

    Get PDF
    We present a study of the correlated transport regimes of a double quantum impurity system with mutual capacitive interactions. Such system can be implemented by a double quantum dot arrangement or by a quantum dot and nearby quantum point contact, with independently connected sets of metallic terminals. Many--body spin correlations arising within each dot--lead subsystem give rise to the Kondo effect under appropriate conditions. The otherwise independent Kondo ground states may be modified by the capacitive coupling, decisively modifying the ground state of the double quantum impurity system. We analyze this coupled system through variational methods and the numerical renormalization group technique. Our results reveal a strong dependence of the coupled system ground state on the electron--hole asymmetries of the individual subsystems, as well as on their hybridization strengths to the respective reservoirs. The electrostatic repulsion produced by the capacitive coupling produces an effective shift of the individual energy levels toward higher energies, with a stronger effect on the `shallower' subsystem (that closer to resonance with the Fermi level), potentially pushing it out of the Kondo regime and dramatically changing the transport properties of the system. The effective remote gating that this entails is found to depend nonlinearly on the capacitive coupling strength, as well as on the independent subsystem levels. The analysis we present here of this mutual interaction should be important to fully characterize transport through such coupled systems.Comment: Submitted to Phys. Rev. B. 11 pages, 10 figure
    corecore