12 research outputs found

    Расчет бокового магнитного сопротивления электромагнитных молотков

    Get PDF
    Hemolysis is an inevitable side effect of cardiopulmonary bypass resulting in increased plasma free hemoglobin that may impair tissue perfusion by scavenging nitric oxide. Acute kidney injury after on-pump cardiovascular surgery arises from a number of causes and severely affects patient morbidity and mortality. Here, we studied the effect of acute hemolysis on renal injury in 35 patients undergoing on-pump surgical repair of thoracic and thoracoabdominal aortic aneurysms of whom 19 experienced acute kidney injury. During surgery, plasma free hemoglobin increased, as did urinary excretion of the tubular injury marker N-acetyl-β-D-glucosaminidase, in patients with and without acute kidney injury, reaching peak levels at 2 h and 15 min, respectively, after reperfusion. Furthermore, plasma free hemoglobin was independently and significantly correlated with the urine biomarker, which, in turn, was independently and significantly associated with the later postoperative increase in serum creatinine. Importantly, peak plasma free hemoglobin and urine N-acetyl-β-D-glucosaminidase concentrations had significant predictive value for postoperative acute kidney injury. Thus, we found an association between increased plasma free hemoglobin and renal injury casting new light on the pathophysiology of acute kidney injury. Therefore, free hemoglobin is a new therapeutic target to improve clinical outcome after on-pump cardiovascular surgery

    Blood transfusions increase circulating plasma free hemoglobin levels and plasma nitric oxide consumption: a prospective observational pilot study

    Get PDF
    Introduction: The increasing number of reports on the relation between transfusion of stored red blood cells (RBCs) and adverse patient outcome has sparked an intense debate on the benefits and risks of blood transfusions. Meanwhile, the pathophysiological mechanisms underlying this postulated relation remain unclear. The development of hemolysis during storage might contribute to this mechanism by release of free hemoglobin (fHb), a potent nitric oxide (NO) scavenger, which may impair vasodilation and microcirculatory perfusion after transfusion. The objective of this prospective observational pilot study was to establish whether RBC transfusion results in increased circulating fHb levels and plasma NO consumption. In addition, the relation between increased fHb values and circulating haptoglobin, its natural scavenger, was studied. Methods: Thirty patients electively received 1 stored packed RBC unit (n = 8) or 2 stored packed RBC units (n = 22). Blood samples were drawn to analyze plasma levels of fHb, haptoglobin, and NO consumption prior to transfusion, and 15, 30, 60 and 120 minutes and 24 hours after transfusion. Differences were compared using Pearson's chi-square test or Fisher's exact test for dichotomous variables, or an independent-sample t test or Mann-Whitney U test for continuous data. Continuous, multiple-timepoint data were analyzed using repeated one-way analysis of variance or the Kruskall-Wallis test. Correlations were analyzed using Spearman or Pearson correlation. Results: Storage duration correlated significantly with fHb concentrations and NO consumption within the storage medium (r = 0.51, P < 0.001 and r = 0.62, P = 0.002). fHb also significantly correlated with NO consumption directly (r = 0.61, P = 0.002). Transfusion of 2 RBC units significantly increased circulating fHb and NO consumption in the recipient (P < 0.001 and P < 0.05, respectively), in contrast to transfusion of 1 stored RBC unit. Storage duration of the blood products did not correlate with changes in fHb and NO consumption in the recipient. In contrast, pre-transfusion recipient plasma haptoglobin levels inversely influenced post-transfusion fHb concentrations. Conclusion: These data suggest that RBC transfusion can significantly increase post-transfusion plasma fHb levels and plasma NO consumption in the recipient. This finding may contribute to the potential pathophysiological mechanism underlying the much-discussed adverse relation between blood transfusions and patient outcome. This observation may be of particular importance for patients with substantial transfusion requirements.Annadal Foundation of the Maastricht University Medical CenterAnnadal Foundation of the Maastricht University Medical Cente

    Open repair for ruptured abdominal aortic aneurysm and the risk of spinal cord ischemia : review of the literature and risk-factor analysis

    Get PDF
    AbstractObjectivesSpinal cord ischemia after open surgical repair for rAAA is a rare event. We estimated the current incidence and tried to identify risk factors. We also report a new case.MethodsGroup A consisted of 10 reports on open repair for rAAA from 1980 until 2009. Only series of ≥100 patients were considered to estimate the incidence. Thirty three case reports from 1956 until 2009 were identified (group B). Case reports from group B were not encountered in group A. Group B patients were stratified according to the type of neurological deficit as described by Gloviczki (type I complete infarction and type II infarction of the anterior two third).ResultsGroup A consisted of 1438 patients. In group A 86% were male with a mean age of 72.1 years. The incidence of post-operative paraplegia was 1.2% (range 0–2.8%). In-hospital mortality was 46.9%. Of the 33 patients of group B were 86% male with a mean age of 68.0 years. Most patients developed a type I (42%) or type II (33%) deficit. In-hospital mortality was 51.6%. No significant differences between different types were encountered.ConclusionSpinal cord ischemia after ruptured AAA is a rare complication with an incidence of 1.2% (range 0–2.8%)

    The impact of selective visceral perfusion on intestinal macrohemodynamics and microhemodynamics in a porcine model of thoracic aortic cross-clamping

    No full text
    INTRODUCTION: Despite its presumed effectiveness and clinical use, the physiology of selective visceral perfusion combined with distal aortic perfusion during open thoracoabdominal aortic surgery has not been characterized. Thus, the aim of this study was to establish a translatable model of thoracic aortic-clamping to assess the effect of selective visceral perfusion with added distal aortic perfusion on local intestinal macrohemodynamics and microhemodynamics, intestinal histopathology, and markers of inflammation and intestinal damage. METHODS: A thoracolaparotomy was performed in 15 pigs, and the aorta was exposed, including the origins of celiac trunk and superior mesenteric artery. The animals were divided into three cohorts: control (I), thoracic aortic cross-clamping (II), and thoracic aortic cross-clamping with selective visceral perfusion plus distal aortic perfusion using extracorporeal circulation (III). Macrocirculatory and microcirculatory blood flow was assessed by transit time ultrasound volume flow measurements and fluorescent microspheres. Intestinal ischemia-reperfusion injury was determined by the analysis of perioperative intestinal fatty acid-binding protein (IFABP) and interleukin-8 (IL-8) levels and correlated with histopathologic changes. RESULTS: Severe intestinal tissue injury and an inflammatory response were observed in cohort II compared with cohort III for IL-8 (38.2 vs 3.56 pg/mL; P = .04). The procedure in cohort III resulted in a flow and pressure-associated intestinal hypoperfusion compared with cohort I in the superior mesenteric artery (mean blood pressure, 24.1 +/- 10.4 vs 67.2 +/- 7.4 mm Hg; P < .0001; mean flow rates: 353.3 +/- 133.8 vs 961.7 +/- 310.8 mL/min; P < .0001). This was paralleled in cohort III vs cohort I by a significant mucosal injury (IFABP, 713 +/- 307.1 vs 170 +/- 115.4 pg/mL; P = .014) despite a profound recruitment of intestinal microcirculation (338% +/- 206.7% vs 135% +/- 123.7%; P = .05). CONCLUSIONS: This study reports a novel large-animal model of thoracic aortic cross-clamping that allows the study of visceral perfusion strategies. However, we demonstrated with IL-8 and IFABP measurements that thoracoabdominal aortic aneurysm surgery with selective visceral perfusion and distal aortic perfusion is superior to the clamp-and-sew technique, even though small intestinal tissue damage cannot be completely avoided by selective visceral perfusion and distal aortic perfusion. In any case, this model seems to be a platform to evaluate and optimize measures for gut wall protection

    Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage

    Get PDF
    Introduction: Acute kidney injury (AKI) and intestinal injury negatively impact patient outcome after cardiac surgery. Enhanced nitric oxide (NO) consumption due to intraoperative intravascular hemolysis, may play an important role in this setting. This study investigated the impact of hemolysis on plasma NO consumption, AKI, and intestinal tissue damage, after cardiac surgery. Methods: Hemolysis (by plasma extracellular (free) hemoglobin; fHb), plasma NO-consumption, plasma fHb-binding capacity by haptoglobin (Hp), renal tubular injury (using urinary N-Acetyl-β-D-glucosaminidase; NAG), intestinal mucosal injury (through plasma intestinal fatty acid binding protein; IFABP), and AKI were studied in patients undergoing off-pump cardiac surgery (OPCAB, N = 7), on-pump coronary artery bypass grafting (CABG, N = 30), or combined CABG and valve surgery (CABG+Valve, N = 30). Results: FHb plasma levels and NO-consumption significantly increased, while plasma Hp concentrations significantly decreased in CABG and CABG+Valve patients (p < 0.0001) during surgery. The extent of hemolysis and NO-consumption correlated significantly (r(2) = 0.75, p < 0.0001). Also, NAG and IFABP increased in both groups (p < 0.0001, and p < 0.001, respectively), and both were significantly associated with hemolysis (R(s) = 0.70, p < 0.0001, and R(s) = 0.26, p = 0.04, respectively) and NO-consumption (R(s) = 0.55, p = 0.002, and R(s) = 0.41, p = 0.03, respectively), also after multivariable logistic regression analysis. OPCAB patients did not show increased fHb, NO-consumption, NAG, or IFABP levels. Patients suffering from AKI (N = 9, 13.4%) displayed significantly higher fHb and NAG levels already during surgery compared to non-AKI patients. Conclusions: Hemolysis appears to be an important contributor to postoperative kidney injury and intestinal mucosal damage, potentially by limiting NO-bioavailability. This observation offers a novel diagnostic and therapeutic target to improve patient outcome after cardiothoracic surgery
    corecore