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Cardiovascular surgery and organ damage: Time to reconsider the
role of hemolysis
Iris C. Vermeulen Windsant, MD,a,b,d Sebastiaan J. Hanssen, MD,a,c,d Wim A. Buurman, PhD,a,b and
Michael J. Jacobs, MD, PhDa,c,d
Cardiovascular surgery with cardiopulmonary bypass is
associated with postoperative organ injury, which severely
affects patient morbidity and mortality. Multiple cardiopul-
monary bypass–related mechanisms have been linked to the
development of tissue damage, including hypoperfusion,
ischemia–reperfusion, and induction of a proinflammatory
response. Hemolysis, resulting in increased plasma free
hemoglobin concentrations, is generally considered an inev-
itable but relatively harmless side effect of cardiopulmonary
bypass. Recently, however, evidence has been mounting
that plasma free hemoglobin scavenges intravascular nitric
oxide, thereby attenuating its bioavailability. Any signifi-
cant reduction in nitric oxide, the most important endoge-
nous vasodilator, impairs tissue perfusion and induces
organ injury development. Moreover, urinary free hemoglo-
bin contributes to renal damage, specifically by catalysis of
reactive oxygen species formation. In this review, the effects
of increased free hemoglobin levels on nitric oxide metabo-
lism are discussed. In addition, we review the role of free he-
moglobin in organ injury development, potential sources of
free hemoglobin during cardiovascular surgery, and thera-
peutic options to attenuate the consequences of hemolysis.
We propose that hemolysis is more than an innocent by-
stander effect of cardiopulmonary bypass–assisted surgery.
Therapeutic interventions to attenuate the effects of hemo-
lysis seem crucial in the reduction of postoperative morbid-
ity and mortality after cardiovascular surgery.

Cardiovascular surgery with extracorporeal circulation is
associated with considerable postoperative morbidity and
mortality, especially among patients undergoing complex
procedures such as combined coronary artery bypass grafting
(CABG) and valve surgery, Bentall procedures, and open re-
pair of thoracic and thoracoabdominal aortic aneurysms.
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These patients are at high risk for development of suchmajor
complications as acute kidney injury,1-6 pulmonary
dysfunction,7,8 sepsis, and multiple organ failure.9

The pathophysiologic mechanisms underlying these
complications have been studied extensively in an attempt
to develop specific prevention and treatment strategies.
The cardiopulmonary bypass (CPB) circuit has been associ-
ated with the development of tissue damage as a result of
insufficient oxygen delivery through hemodilution,10 ische-
mia–reperfusion,11 and hypoperfusion.12,13 Cardiotomy
suction during CPB has been shown to be a source of
lipid microemboli, which form small vascular occlusions
in several tissues, including brain, kidney, spleen, and
muscle.14,15 Furthermore, the nonendothelial surface of
the CPB system initiates a proinflammatory response that
deteriorates cellular function, for instance the function of
renal tubular cells.16,17 Indeed, the use of a mini-CPB sys-
tem attenuates the release of intestinal and renal tissue dam-
age markers in cardiac surgical patients relative to a normal
CPB circuit by reducing both the proinflammatory contact
surface area and hemodilution.18 Similarly, the incidences
of liver injury and kidney injury are significantly reduced
in patients undergoing CABG without CPB (off-pump
CABG) relative to those undergoing on-pump CABG.19,20

Nevertheless, although off-pump surgery has gained popu-
larity worldwide, CPB-assisted surgery is still widely used.
To reduce CPB-related morbidity and mortality, successful
efforts have been made to increase CPB biocompatibility
and flow performance. Unfortunately, these improvements
have not led to a significantly decreased incidence of organ
dysfunction after cardiovascular surgery.21 This relative
failure underscores the need for further clarification of un-
derlying pathophysiologic mechanisms of tissue damage
and dysfunction in this setting.21

A common consequence of CPB is hemolysis, which is
generally considered an inevitable but relatively harmless
phenomenon. Hemolysis is principally caused by mechani-
cal shear stress within the perfusion circuit and results in the
release of hemoglobin into the circulation.22,23 The role of
this cell-free plasma hemoglobin (fHb) in the development
of organ injury has gained increasing interest ever since a di-
rect relationship of hemolysis, impaired vascular function,
decreased organ perfusion, and organ dysfunction was re-
producibly shown in experimental animal models and in
chronic hemolytic diseases in human beings.24,25 Most
recently, Meyer and colleagues26 showed that fHb arising
from hemodialysis-induced hemolysis impairs vascular
Cardiovascular Surgery c Volume 142, Number 1 1

https://core.ac.uk/display/81130156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:w.buurman@maastrichtuniversity.nl
http://dx.doi.org/10.1016/j.jtcvs.2011.02.012


Expert Review Vermeulen Windsant et al
2

Abbreviations and Acronyms
CABG ¼ coronary artery bypass grafting
CO ¼ carbon monoxide
CPB ¼ cardiopulmonary bypass
fHb ¼ cell-free plasma hemoglobin
HO ¼ heme oxygenase
NO ¼ nitric oxide
RBC ¼ red blood cell
SNO-Hb ¼ S-nitrosylated hemoglobin
function in patients, leading to speculation regarding a role
for fHb in the development of microcirculatory dysfunction
during acute and transient hemolysis.27 Moreover, the re-
sults of Meyer and colleagues26 substantiate our own recent
findings28 that acute hemolysis during major aortic surgery
is independently associated with proximal renal tubular
damage and postoperative acute kidney injury.We therefore
propose that hemolysis is an important but as yet generally
unrecognized contributor to the development of organ in-
jury during surgical procedures associated with hemolysis,
such as cardiovascular surgery.

The interfering role of fHb in intravascular nitric oxide
(NO) metabolism is believed to play a critical role in the de-
velopment of microcirculatory impairment, organ damage,
and organ dysfunction.24 In this review we will therefore
discuss (1) the effects of fHb on intravascular NO bioavail-
ability, (2) the role of fHb in the induction of microcircula-
tory dysfunction and organ damage, (3) the potential
sources of fHb during cardiovascular surgery, and (4) ther-
apeutic options to attenuate the consequences of hemolysis
during CPB-assisted surgery.

INCREASED PLASMA FREE HEMOGLOBIN
PRODUCED BY HEMOLYSIS REDUCES
INTRAVASCULAR NITRIC OXIDE
BIOAVAILABILITY

On the intravascular destruction of red blood cells
(RBCs), fHb enters the circulation. This fHb either gets
bound to haptoglobin or is oxidized to methemoglobin.
The hemoglobin–haptoglobin complex is rapidly cleared
from the circulation through endocytosis by the surface
scavenger receptor CD163, which is expressed on mono-
cytes and tissue macrophages. In this way haptoglobin pre-
vents accumulation of plasma fHb under physiologic
circumstances.29 This effect was illustrated in patients
undergoing cardiac surgery in whom intravenous adminis-
tration of haptoglobin significantly reduced circulating
fHb levels.30 Free heme, another byproduct of hemolysis,
is released during oxidation of free hemoglobin and is
scavenged by circulating hemopexin. Subsequently, heme
oxygenase (HO)-1, activated as a result of reduced
microcirculation, degrades heme to carbon monoxide
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(CO), biliverdin, and iron, mainly in the liver and spleen.31

This cytoprotective induction of HO-1 by the microvascula-
ture has been shown to modulate inflammation in patients
after cardiac surgery with CPB, which may benefit patient
recovery postoperatively32; furthermore, the induction of
HO-1 inhibits vascular inflammation and vasoocclusion in
transgenic sickle cell mice.32,33 Because both haptoglobin
and hemopexin are not recycled after clearance of
hemoglobin–haptoglobin or heme–hemopexin complexes,
excessive RBC lysis rapidly exhausts their storage pools.
This results in enhanced levels of fHb and free heme,
both harmful products. First of all, free heme is able to
react with endogenous hydrogen peroxide, thereby
forming toxic free radicals that are involved in the
induction of prooxidant damage.34 Second, oxygenated
fHb has been shown to be a potent scavenger of NO, the
most important endogenous vasodilator. The fast (6–8 3
107 mol/[L $ s]) and irreversible reaction of oxygenated
fHb with NO results in conversion of fHb to methemoglobin
and conversion of NO to nitrate. Circulating fHb is also
present in a deoxygenated form. Such deoxygenated fHb
also scavenges NO, forming nitrosyl hemoglobin, but this
reaction is both slower (107 mol/[L $ s]) and reversible.24,29

As a result, hemolysis significantly impairs NO
bioavailability, potentially inducing microcirculatory
dysfunction.35,36 In an in vivo canine hemolysis model,
fHb-associated NO scavenging has been found to be corre-
lated with systemic vasoconstriction and a reduction in re-
nal function.25 In patients with chronic high fHb levels as
a result of sickle cell disease, forearm blood flow
responses were reduced by 80% after infusion of the NO
donor sodium nitroprusside relative to patients with below
average fHb levels.24 Third, hemolysis also results in re-
lease of arginase 1, an enzyme that converts L-arginine,
the substrate for NO synthesis, to ornithine.37 In this way,
hemolysis not only causes scavenging of NO but also theo-
retically prevents new NO formation. In practice, however,
we have shown that arginase 1 release during surgery with
CPB does not affect the arginine to ornithine ratio (unpub-
lished data). This implies that arginase levels during this
type of surgery are not high enough to affect arginine levels
and thus attenuate NO synthesis.38

CELL-FREE HEMOGLOBIN CONTRIBUTES TO
MICROCIRCULATORY DYSFUNCTION
THROUGH NITRIC OXIDE SCAVENGING,
POTENTIALLY INDUCING HYPOXIC TISSUE
DAMAGE

The role of hemolysis in organ damage development had
already been described in the mid 1970s.24,39 These studies
focused on acute kidney injury because glomerularly
filtered urinary fHb, rather than plasma fHb, was
considered the culprit in organ injury induction. At that
time, only the kidney was believed to be at risk for
y c July 2011
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fHb-induced damage. Two mechanisms were proposed to
underlie the association between hemolysis and renal tissue
damage development. First, urinary fHb–derived free iron
and heme catalyze the generation of reactive oxygen spe-
cies, which damage the renal tubular epithelium.40 Indeed,
administration of the iron scavenger deferoxamine did at-
tenuate glomerular and tubular dysfunction induced by in-
travenous fHb administration in rats.41 Similarly,
a reduced intravascular iron scavenging capacity—reflected
by low plasma ferritin concentrations—was associated with
acute kidney injury after human cardiovascular surgery.42

Second, intratubular fHb precipitation and heme cast for-
mation in the acidic ultrafiltrate were considered to obstruct
the tubular lumen, reducing glomerular filtration.40,43

Subsequent prevention of cast formation by urinary
alkalanization was found to reduce tubular injury and
glomerular dysfunction after intravenous fHb infusion in
rats.40

The discovery of the NO-scavenging properties of cir-
culating plasma fHb by Reiter and coworkers24 in 2002
provided a complementary explanation for hemolysis-
induced organ injury. For the first time, circulating fHb
was recognized as a key player in the pathophysiologic
mechanisms of complications in patients with chronic he-
molytic disorders, such as sickle cell disease and malaria
infection.24 Furthermore, the reported adverse effects as-
sociated with administration of a hemoglobin-based oxy-
gen carrier—which basically consisted of fHb—could
be explained by intravascular NO scavenging through
fHb.44 The negative effects of increased plasma fHb
have been confirmed by many studies since 2002 in both
animals and patients. For example, hemolysis induced by
water infusion or direct intravascular fHb administration
in dogs was associated with a significant increase in
plasma NO consumption and with simultaneous enhanced
systemic vascular resistance. These effects were attenu-
ated by NO inhalation (which causes conversion of plasma
fHb into the less bioactive molecule methemoglobin in the
pulmonary circulation), supporting a causal role for NO
scavenging by fHb.25 In human beings, forearm blood
flow responses to intra-arterial infusion of sodium nitro-
prusside, a NO donor, were found to be negatively corre-
lated with plasma fHb levels in patients with sickle cell
disease.24,25

The potential role of plasma fHb in the development of
organ injury is further supported by our observation that
plasma fHb levels are significantly associated with renal
proximal tubular damage during CPB-assisted major aortic
surgery.26 Moreover, peak plasma fHb levels significantly
predict postoperative acute kidney injury. We could not de-
tect fHb in urinary samples during the perioperative period,
indicating that urinary fHb is not a major contributor to
renal tubular injury development in this setting.26 Also,
forearm blood flow responses after infusion of sodium
The Journal of Thoracic and
nitroprusside at the time of peak plasma fHb concentrations
are significantly reduced relative to the response measured
when fHb-levels are normalized. This observation further
underscores a potential causal role of fHb-induced tissue
perfusion impairment during surgery (unpublished data).
In addition, we have shown that fHb induces intestinal mi-
crocirculatory dysfunction and tissue integrity loss in a rat
hemolysis model.45

SOURCES OF CIRCULATING FREE
HEMOGLOBIN DURING CARDIOVASCULAR
SURGERY WITH CARDIOPULMONARY BYPASS
Hemolysis can principally be attributed to 3 sources

during cardiovascular surgery: the CPB, the cell salvage
system, and (massive) RBC transfusion.

Cardiopulmonary Bypass
CPB inflicts sublethal to lethal RBC damage through tur-

bulence and shear stress within the pump, tubes, connectors,
cannula, reservoirs, and oxygenator.23 Blood–air contact,
blood–nonendothelial surface contact, wall impact forces,
the use of positive and negative pressures to assist venous
drainage, and the use of an integrated cardiotomy suction
reservoir all contribute to intraoperative hemolysis.23,46,47

In addition to CPB composition, CPB duration is
considered to influence the degree of hemolysis, with
longer CPB times resulting in increased lysis of RBCs.48

As evidence of this phenomenon, we found a positive and
statistically significant correlation between total fHb re-
lease in the perioperative period and the duration of CPB
in a group of 54 patients undergoing CPB-assisted major
aortic surgery (unpublished data; Figure 1). In addition to
direct RBC lysis, the CPB system induces sublethal RBC
injury.49,50 Such sublethally damaged RBCs have been
shown to be more prone to later lysis in vivo.23,51 Delayed
lysis of sublethally damaged RBCs could explain the
continuing increase of plasma fHb after the cessation of
CPB in these patients (unpublished data; Figure 2).

Cell Salvage
Cell salvage devices are additional sources of fHb.52,53

The mechanical trauma of washing and the transfusion of
damaged autologous shed blood could contribute to
increased plasma fHb levels. Although modern cell
salvage systems are able to remove the majority of fHb
during washing, they do not select between intact RBCs
and damaged RBCs, which are prone to later lysis in
vivo.54 In this way, autologous blood transfusion could con-
tribute to increased plasma fHb levels during surgery.

RBC Transfusion
A last potential source of fHb is stored RBC concentrate.

Storage of erythrocytes results in irreversible morphologic
changes, such as reductions in membrane deformability,
Cardiovascular Surgery c Volume 142, Number 1 3



FIGURE 1. Association between cardiopulmonary bypass time and ex-

tent of hemolysis. A correlation analysis between cardiopulmonary bypass

(CPB) time and total free hemoglobin (fHb) release (defined as the area un-

der the curve) was performed in 54 patients undergoing open surgical repair

of thoracoabdominal aortic aneurysms with cardiopulmonary bypass. A

significant correlation (Pearson r ¼ 0.33, P<.05) was found between car-

diopulmonary bypass time and plasma free hemoglobin release (unpub-

lished data).

FIGURE 2. Hemolysis during open surgical repair of thoracoabdominal

aortic aneurysms with cardiopulmonary bypass (CPB). Plasma free hemo-

globin (fHb) levels increased during surgery and continued to increase sig-

nificantly in the early postoperative period. This indicates ongoing lysis of

red blood cells after cardiopulmonary bypass had stopped. Asterisk indi-

cates P<.05 versus preoperative level; triple asterisk indicates P<.001

versus preoperative level; crosshatch indicates P< .05 versus end-CPB

level; double crosshatch indicates P<.01 versus end-CPB level (unpub-

lished data). R, Reperfusion.
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oxygen binding, and delivery capacity, in addition to in-
creased adhesiveness, increased aggregability, and accumu-
lation of proinflammatory substances.55 These changes are
considered to underlie the relationship between RBC trans-
fusion and adverse outcome, a phenomenon that has given
rise to debate about the pros and cons of allogeneic RBC ad-
ministration. In addition, the storage duration of blood
products appears to be a critical factor in transfusion-
related morbidity and mortality. In a study by Kock and col-
leagues,55 transfusion of ‘‘old’’ blood (stored for>14 days)
was associated with a significantly higher mortality among
patients undergoing cardiac surgery than was seen with
transfusion of RBCs stored for 14 days or less. Transfusion
of ‘‘older’’ blood was also significantly related to prolonged
ventilatory support and increased incidences of renal fail-
ure, septicemia or sepsis, and multiple organ failure. In an-
other study, RBC transfusion was the most reliable
predictor of adverse outcome in 11,963 patients undergoing
isolated CABG, with postoperative morbidity and mortality
being dose dependently related to RBC transfusion.56 We
propose that high fHb concentrations caused by RBC lysis
in stored blood contribute to posttransfusion morbidity and
mortality by inducingmicrocirculatory dysfunction through
NO scavenging. In addition, the shear stress imposed on less
viable RBCs within the transfusate could cause additional
increases in fHb both during and after infusion. To study
4 The Journal of Thoracic and Cardiovascular Surger
the degree of direct hemolysis of packed RBCs, we
measured fHb levels by derivate spectrophotometry57 in
samples from 60 randomly collected and transfused packed
RBC units (330 mL/U). The levels of fHb in the packed
RBC supernatant averaged 36 � 2 mmol/L (mean �
SEM), indicating severe hemolysis. Moreover, storage
durations and fHb levels were significantly correlated
(unpublished data, Figure 3). This correlation means that
transfusion of especially aged packed RBCs can result in
an additional increase in circulating fHb in patients under-
going cardiovascular surgery with CPB. Recently, it was re-
ported that packed RBC transfusion did indeed contribute to
systemic fHb levels, with an increase of 7.5mM per trans-
fused unit.58 Importantly, the supernatant of the packed
RBCs, which contains the fHb molecules, was indeed
able to consume NO, with a strong correlation between
fHb levels and NO consumption.58 The contributing effect
of RBC transfusion to circulating plasma fHb concentra-
tions may thus be considerable. The median transfusion
requirement in a large cohort of cardiac surgical patients
was found to be 2 packed RBC units,55 whereas 10 units
are required for patients undergoing open repair of thora-
coabdominal aortic aneurysms.28 Transfusion of 2 or 10
packed RBC units could increase plasma fHb levels, with
15 mmol/L and 75 mmol/L, respectively. These levels are
in sharp contrast to the plasma fHb levels of 0.1 to 0.2
mmol/L seen in normal healthy volunteers.24,58 In addition
to direct fHb administration through packed RBC
y c July 2011



FIGURE 3. Association between storage time and free hemoglobin (fHb)

levels in packed red blood cell transfusion bags. A significant correlation

(Pearson r¼ 0.43, P<.001) was found between packed red blood cell stor-

age duration and free hemoglobin concentration in packed red blood cell

transfusion bags (n ¼ 60) used for transfusion during cardiovascular sur-

gery. These data indicate that prolonged storage duration results in more

red blood cell injury, with concomitantly more free hemoglobin being

transfused into the patient (unpublished data).
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transfusion, systemic fHb concentrations could additionally
increase as a result of delayed lysis of sublethally damaged
RBCs. Finally, another consequence of RBC storage is
that NO bound to intracellular hemoglobin, known as
S-nitrosylated hemoglobin (SNO-Hb), is rapidly depleted.
RBCs containing SNO-Hb are believed to contribute to va-
sodilation under hypoxic conditions through release of NO.
Indeed, the capacity of RBCs to induce vasodilation is sig-
nificantly diminished in parallel with SNO-Hb depletion. In
a canine study, reconstitution of SNO-Hb by exposure to
aqueous NO restored the vasodilatory capacity of transfused
RBCs and improved cardiac blood flow.59

THERAPEUTIC OPTIONS TO ATTENUATE THE
ADVERSE EFFECTS OF CELL-FREE PLASMA
HEMOGLOBIN–MEDIATED NITRIC OXIDE
SCAVENGING

The discovery of the NO-scavenging capacity of circulat-
ing fHb opened up a new field of study regarding therapeu-
tic options in diseases characterized by chronic hemolysis,
such as sickle cell disease and malaria.60 In this section, we
present therapies that we consider to be of value for patients
with acute hemolytic episodes, such as occur during cardio-
vascular surgery (Table 1).

The direct (intravascular) therapeutic use of NO itself is
greatly impeded by its extremely short half-life of 0.05 to
The Journal of Thoracic and
1.8 ms in vivo.61 Therefore either inactivation of fHb or
enhancement of the NO-donor pool has the potential to
reduce the incidence and severity of complications of he-
molytic diseases. We focus mainly on 3 potential thera-
peutic interventions (Figure 4): NO inhalation, nitrite
supplementation, and haptoglobin administration. We
consider these therapeutic options to be the most clini-
cally relevant at this time. In addition, we discuss 3
more experimental therapies: arginine and citrulline sup-
plementation, CO inhalation, and endothelin receptor
blockade. For a more complete discussion of therapeutic
options in chronic hemolytic disease, we refer the reader
to articles by Kato and Gladwin60 and Lundberg and
colleagues.62

NO Inhalation
Intravascular conversion of plasma fHb into a less bioac-

tive molecule is an interesting option to reduce the adverse
consequences of increased fHb concentrations. NO gas in-
halation results in pulmonary oxidation of fHb into methe-
moglobin, which does not scavenge NO, reducing NO
consumption in plasma. In a canine hemolysis model,
NO inhalation attenuated the pulmonary and systemic va-
soconstrictor effects of fHb.25 In patients with sickle cell
disease, NO inhalation of 80 ppm for 1.5 hours reduced
pain during vasoocclusive crisis, diminished plasma NO
consumption, and increased methemoglobin levels, indicat-
ing oxidation of fHb.24 Moreover, inhalation of NO at 80
ppm for 4 hours in children with sickle cell disease was
not associated with any toxic side effects, such as hypoten-
sion, clinically significant decreases in oxygenation by
pulse oximetry, significant increases in methemoglobin,
or toxic concentrations of nitrogen dioxide.63 Even contin-
uous NO inhalation at 40 ppm for 3.2 days in a patient with
sickle cell disease with multiorgan involvement was not as-
sociated with adverse side effects and it markedly im-
proved the patient’s clinical state.64 Finally, mixing of
NO gas at concentrations as great as 20 ppm with normal
ventilation gas showed therapeutic potential in adult pa-
tients with cardiac surgery–associated pulmonary hyper-
tension by reducing right ventricular afterload and
preventing right ventricular failure.65,66 In addition to
fHb oxidation, NO gas inhalation also results in the
formation of relatively stable NO species in the lung.
Longer intravascular half-lives of these NO carriers, such
as nitrite, enable transport of NO in the blood, mediating
extrapulmonary effects of NO gas inhalation.67,68 In
conclusion, we consider NO inhalation to be a promising
and potentially easily applicable therapeutic option to
attenuate the adverse effects of fHb-mediated NO scaveng-
ing during cardiovascular surgery. Ideally, the dose of NO
inhalation could even be adjusted according to intraopera-
tive fHb measurements, which are already routinely per-
formed at our institution.
Cardiovascular Surgery c Volume 142, Number 1 5



TABLE 1. Potential therapeutic options to reduce hemolysis-associated morbidity in patients undergoing cardiovascular surgery

Therapy Main therapeutic mechanisms Feasibility References

NO inhalation Oxidizes and inactivates fHb in pulmonary

circulation, reducing NO scavenging

Stimulates intrapulmonary

formation of NO

donors, enhancing NO

bioavailability

Already applied in patients

with sickle cell disease and those

undergoing

cardiac surgery

Exact dose and duration of

inhalation need to be

studied

Reiter et al,24

Minneci et al,25

Kato et al,60

Cannon et al67

Nitrite supplementation

(oral, intravenously,

by inhalation)

NO donor during reduction,

especially during hypoxia

and low pH

Mediates cytoprotection through hypoxic

vasodilation and decreased formation

of reactive oxygen species

Oxidizes fHb, thereby

reducing NO scavenging

Nitrite successfully used in

experimental setting with

patients with sickle cell disease

Exact dose, duration, and mode of

administration need to be assessed

Lundberg et al,62

Shiva et al,69

Piknova et al,71

Minneci et al76

Haptoglobin administration Natural fHb scavenger

Accelerates fHb uptake by monocytes and

macrophages and accelerates

hepatic degradation

Limits renal filtration of fHb

Costs currently limit

clinical applicability

Haptoglobin potentially does not limit

NO scavenging by fHb

Tanaka et al,30

Lim et al,81

Azarov et al,82

Boretti et al83

Arginine and citrulline

supplementation

Enhances substrate delivery for NO

formation through nitric oxide

synthases

Arginine used experimentally in 10 patients

with sickle cell disease

Dose and duration of arginine and citrulline

administration unknown

Morris et al,86

Luiking et al88

Carbon monoxide inhalation Regulates vascular tone and

induces vasodilation at low doses

Reduces proinflammatory

response

Relatively inert and does not form reactive

oxygen species

No human data on applicability in setting

of cardiovascular surgery

Belcher et al33

Endothelin receptor blockade Limits endothelin 1–induced

vasoconstriction

Only tested in mouse sickle cell disease

model

Sabaa et al90

NO, Nitric oxide; fHb, free hemoglobin.
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Nitrite Supplementation
Another promising candidate for therapeutic use is the

nitrite anion (NO2
�), long believed to be merely an inert

oxidation product of NO. Recent studies, however, have
provided evidence for the existence of multiple nitrite
reducing pathways in which nitrite is converted back to
NO, making nitrite an important NO donor.62,69,70

Furthermore, nitrite is able to oxidize fHb in plasma,
potentially limiting the capacity of fHb to scavenge NO.71

The enzymatic and nonenzymatic pathways of nitrite reduc-
tion include (free) deoxyhemoglobin and deoxymyoglobin,
xanthine oxidoreductase, protons, ascorbate, and polyphe-
nols.62 The process of NO reduction is most efficient at
low PO2 and low pH and thus occurs preferentially during
hypoxia or anoxia.70,72,73 This is of particular importance
because NO synthase activity is greatly limited at low Po2
values.74 In adult patients with sickle cell anemia, infusions
6 The Journal of Thoracic and Cardiovascular Surger
of 0.4-, 4-, and 40-mmol/L nitrite into the brachial artery led
to a dose-dependent increase in forearm blood flow as great
as 77%.75 In a canine hemolysis model, sodium nitrite in-
creased blood flow in a similar way.76 In addition to promot-
ing vasodilation, nitrite has been shown to exert potent
cytoprotective effects in the liver, heart, and brain in several
animal models of ischemia–reperfusion.77 The pathway by
which nitrite mediates cytoprotection in this setting is as yet
unresolved but is believed to be dual. First, nitrite enables
hypoxic vasodilation, as stated previously. Second, nitrite
is able to nitrosate complex I of the mitochondrial electron
transport chain, inhibiting its activity and decreasing the
formation of reactive oxygen species in the reperfusion
phase.69 Considering these properties, it has been suggested
that nitrite has therapeutic value in various diseases, such as
sickle cell disease, stroke, myocardial infarction, and organ
transplantation. Nevertheless, the optimal nitrite dose for
y c July 2011



FIGURE 4. Potential sources and effects of plasma free hemoglobin (HB) during cardiovascular surgery with cardiopulmonary bypass, and therapeutic

options to attenuate hemolysis-induced organ damage. Intravascular hemolysis during cardiovascular surgery can be attributed to the cardiopulmonary by-

pass, transfusion of red blood cells, and cell salvage use (left). Lysis of red blood cells results in increased circulating plasma free hemoglobin (Hb) levels

(orange squares).Under physiologic conditions, free hemoglobin is rapidly cleared by the scavenger haptoglobin. Haptoglobin–hemoglobin (Hp-Hb) com-

plexes bind to CD163 expressed by monocytes and macrophages, initiating endocytosis and degradation (middle, bottom). Haptoglobin is not recycled, so

excessive hemolysis depletes haptoglobin storages rapidly. Nonscavenged free hemoglobin (fHb) potently binds circulating nitric oxide (NO), thereby lim-

iting its bioavailability. In this way high free hemoglobin levels increase the nitric oxide–scavenging capacity of blood, causing impaired vasodilation as

a result of vascular nitric oxide shortage. Decreased vasodilation contributes to impaired tissue perfusion and development of organ damage and organ dys-

function (right, bottom). The adverse effects of free hemoglobin may be counteracted by either increasing haptoglobin levels to support free hemoglobin

scavenging or enhancing the nitric oxide donor pool to increase nitric oxide bioavailability. Haptoglobin can be administered intravenously, or haptoglobin

synthesis may be upregulated through corticosteroid administration (center, bottom). The nitric oxide donor pool could be increased by oral or intravenous

administration of nitrite, which is oxidized to nitric oxide under low PO2 or low pH. Nitric oxide inhalation inactivates free hemoglobin in the pulmonary

circulation (or oxygenator in the cardiopulmonary bypass circuit) by transforming it to bioinactive methemoglobin (metHb, center, top). In this way scav-

enging and inactivation of free hemoglobin and supplementation of nitric oxide prevent the adverse effects of plasma free hemoglobin during cardiovascular

surgery (right, top).
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human systemic administration has not yet been clarified.
Interestingly, the effect of nitrite may be greater at low
plasma concentrations (<200 nmol/L), being lost at high
plasma levels (>1000 mmol/L).78,79 Furthermore, it has
been reported that the reaction between oxygenated fHb
(in contrast to deoxygenated fHb) and nitrite could initiate
an autocatalytic free radical chain, leading to unwanted
oxidative damage.80 Piknova and colleagues71 addressed
this issue and concluded that free radical formation in
plasma during the reaction of pharmacologic doses of nitrite
(up to 120 mmol/L) with clinically relevant levels of fHb (30
mmol/L) would be highly unlikely. In conclusion, we con-
sider nitrite to have potential in patients undergoing cardio-
vascular surgery to prevent and treat hemolysis-associated
morbidity. Nevertheless, the optimal dose and application
must be studied further.
The Journal of Thoracic and
Haptoglobin Administration
Administration of haptoglobin, which is the physiologic

fHb scavenger, appears to be a logical choice for reducing
fHb concentrations. Haptoglobin targets fHb for degrada-
tion in the liver, monocytes, and macrophages. Further-
more, haptoglobin prevents glomerular filtration of fHb,
reducing fHb-induced kidney damage. Increased fHb levels
during cardiac surgery have been associated with total de-
pletion of haptoglobin,30 enhancing the NO-scavenging ca-
pacity of plasma. Indeed, haptoglobin knock-out mice were
found to be more sensitive to the adverse effects of
phenylhydrazine-induced hemolysis.81 Renal DNA damage
was significantly higher and glomerular filtration function
(reflected by poorer renal clearance of tritium-labeled inu-
lin) was significantly lower in haptoglobin knock-out
mice relative to haptoglobin-positive mice. Interestingly,
Cardiovascular Surgery c Volume 142, Number 1 7
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administration of vasodilators restored glomerular filtra-
tion, implicating renal vasoconstriction as the major con-
tributor to hemolysis-induced acute kidney injury. This
supports the mechanism of NO scavenging by plasma
fHb. In addition, haptoglobin administration in patients un-
dergoing cardiac surgery with plasma fHb levels surpassing
2.3 mmol/L was associated with a reduction of renal tubular
damage.30 Nevertheless, this positive effect of haptoglobin
was attributed to a decrease in urinary fHb levels and a sub-
sequent attenuation of oxidative renal damage.

Haptoglobin administration is an interesting therapeutic
option, but its clinical application may be limited. First, it
has been recently found that in vitro the hemoglobin–hapto-
globin complex still potently scavenges NO at the same rate
as fHb. Although binding of fHb to haptoglobin increases
the rate of uptake by monocytes and macrophages 2-fold
(hereby disabling NO scavenging), it is questionable
whether this increased uptakewould affect NO bioavailabil-
ity.82 Second, the costs involved in retrieving or producing
the amounts of haptoglobin necessary for clinical applica-
tion currently limit widespread implementation. Recently,
Boretti and coworkers83 made use of the fact that the hapto-
globin promoter gene contains glucocorticoid-responsive
elements. Administration of 4mg/kg prednisone twice daily
for 3 days increased plasma haptoglobin levels 6-fold in
dogs.83 Importantly, the glucocorticoid stimulation of hap-
toglobin synthesis prevented the fHb-induced increase in
mean arterial pressure in dogs after fHb infusion, most
probably as a result of scavenging of fHb by haptoglobin.83

This finding sheds new light on the long-standing debate as
to whether corticosteroid administration during cardiac and
cardiovascular surgery is useful.84,85 In summary,
haptoglobin could be useful to reduce kidney damage
caused by intratubular fHb toxicity. The effect on NO
scavenging may, however, be limited.
Other Potential Therapies
We consider NO inhalation and nitrite supplementation

to be promising therapeutic interventions, because both
can be used successfully in the acute setting of cardiovascu-
lar surgery. Notwithstanding, several other therapeutic
modalities may be of value for patients at risk for acute
hemolytic episodes.

Arginine and citrulline supplementation. The natural ni-
trogen donor for NO synthesis is L-arginine, and arginine
supplementation enhances NO formation. Arginine therapy
at a dose of 0.1 g/kg 3 times a day for 5 days in 10 adult pa-
tients with sickle cell anemia and pulmonary hypertension
resulted in a significant decrease (15.2%) in pulmonary
arterial systolic pressures, implicating vasodilation.86,87

Another interesting approach would be administration of
citrulline, a substrate for de novo arginine synthesis. It has
been suggested that in cases of high arginase 1 levels,
8 The Journal of Thoracic and Cardiovascular Surger
such as occur during hemolysis, citrulline supplementation
might restore the intracellular arginine balance and promote
NO production.88 It remains unknown, however, whether
and to what extent arginine or citrulline supplementation
is beneficial in patients with acute hemolysis during cardio-
vascular surgery.

CO inhalation. CO is produced during breakdown of the
heme ring of fHb, which is mediated by HO-1. Inhaled
CO, at low doses of 250 ppm or less, has been shown to re-
duce vasoocclusion in a mouse sickle cell model. CO even
mimics some of the functions of NO, such as inhibition of
platelet aggregation and activation, regulation of vascular
tone, and reduction of a proinflammatory response.33 CO
is relatively inert, in contrast to NO, which is able to react
with intravascular reactive oxygen species to form the
highly reactive peroxynitrite (ONOO�).89 CO has therefore
been proposed to be even more effective in treating hemo-
lytic disease than NO, but this hypothesis has not been
substantiated in human studies.

Endothelin receptor blockade. Endothelin 1 is an ex-
tremely potent vasoconstrictor, and its secretion is repressed
by NO. Diminished NO bioavailability as a result of hemo-
lysis counterbalances this negative feedback, resulting in
enhanced endothelin 1 levels and vasoconstriction. A
mouse sickle cell model provided evidence for beneficial
effects of endothelin receptor blockade on renal blood
flow, inflammation, and vascular congestion in the lungs
and kidneys.90 Reduction of inflammation would be an ad-
ditional positive effect in patients subjected to CPB, which
induces a proinflammatory response. Nevertheless, further
studies are essential to determine whether short-term endo-
thelin receptor blockage is beneficial in this setting, because
it is very different from sickle cell anemia.

In conclusion, there are several promising therapeutic in-
terventions to attenuate the adverse effects of increased
plasma fHb levels in patients suffering from acute hemo-
lytic disease, including patients undergoing surgery with
CPB, patients with trauma, and patients needing long-
term extracorporeal support, for instance extracorporeal
membrane oxygenation or hemodialysis.91,92
HEMOLYSIS-INDUCED ORGAN INJURY IN
CARDIOVASCULAR SURGERY: SUMMARYAND
FUTURE PERSPECTIVES

As evaluated in this review, hemolysis during CPB creates
a latent adverse effect. The NO-scavenging effect of plasma
fHb contributes to the deleterious effects of CPB, such as hy-
poperfusion and ischemia–reperfusion, thereby further
hampering tissue perfusion and resulting in organ injury
and dysfunction. These findings shed new light on the path-
ophysiologicmechanisms and preventivemeasures of organ
injury during on-pump cardiovascular surgery (Figure 4).
y c July 2011



Vermeulen Windsant et al Expert Review
CONCLUSIONS
Evidence is mounting that enhanced circulating levels of

plasma fHb are detrimental, not only in the setting
of chronic hemolytic diseases but also in the acute setting
of cardiovascular surgery. The fHb-induced perturbations
in microcirculatory blood flow and subsequent hypoperfu-
sion or even ischemic damage, complemented by urinary
fHb–induced oxidative stress to renal tissue cells, should be
acknowledged as an important risk factor for organ injury
development in patients undergoing cardiovascular surgery.
Patients undergoing such procedures are at increased risk
for development of postoperative organ injury, with corre-
spondingly worse patient outcomes. Circulating fHb appears
to be an important determinant in organ injury development,
which offers a new therapeutic opportunity to reduce postop-
erative morbidity and mortality of these patients. Interven-
tional studies with NO inhalation, nitrite supplementation,
or haptoglobin administration should be performed to
establish the causal links among plasma fHb, NO bioavail-
ability, and organ injury in this particular setting.25,30,93,94

Furthermore, such interventional studies will provide
valuable information for improvement of patient outcome.
Finally, the role of fHb in organ injury development is
of importance not only for patients undergoing
cardiovascular surgery but also for other patient groups at
risk for hemolysis, such as patients with trauma, patients
undergoing hemodialysis, and patients requiring long-term
extracorporeal oxygenation or extracorporeal life-support.
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