20 research outputs found

    Moleculaire toxicologie: uitzicht op inzicht?

    Get PDF

    Generic method for the absolute quantification of glutathione S-conjugates: Application to the conjugates of acetaminophen, clozapine and diclofenac

    No full text
    Modification of cellular macromolecules by reactive drug metabolites is considered to play an important role in the initiation of tissue injury by many drugs. Detection and identification of reactive intermediates is often performed by analyzing the conjugates formed after trapping by glutathione (GSH). Although sensitivity of modern mass spectrometrical methods is extremely high, absolute quantification of GSH-conjugates is critically dependent on the availability of authentic references. Although 1H NMR is currently the method of choice for quantification of metabolites formed biosynthetically, its intrinsically low sensitivity can be a limiting factor in quantification of GSH-conjugates which generally are formed at low levels. In the present study, a simple but sensitive and generic method for absolute quantification of GSH-conjugates is presented. The method is based on quantitative alkaline hydrolysis of GSH-conjugates and subsequent quantification of glutamic acid and glycine by HPLC after precolumn derivatization with o-phthaldialdehyde/N-acetylcysteine (OPA/NAC). Because of the lower stability of the glycine OPA/NAC-derivate, quantification of the glutamic acid OPA/NAC-derivate appeared most suitable for quantification of GSH-conjugates. The novel method was used to quantify the concentrations of GSH-conjugates of diclofenac, clozapine and acetaminophen and quantification was consistent with 1H NMR, but with a more than 100-fold lower detection limit for absolute quantification

    Characterization of kinetics of human cytochrome P450s involved in bioactivation of flucloxacillin:inhibition of CYP3A-catalysed hydroxylation by sulfaphenazole

    No full text
    Background and Purpose: The aim of this study was to characterize the human cytochrome P450s (CYPs) involved in oxidative bioactivation of flucloxacillin to 5-hydroxymethyl flucloxacillin, a metabolite with high cytotoxicity towards biliary epithelial cells. Experimental Approach: The CYPs involved in hydroxylation of flucloxacillin were characterized using recombinant human CYPs, pooled liver microsomes in the presence of CYP-specific inhibitors and by correlation analysis using a panel of liver microsomes from 16 donors. Key Results: Recombinant CYPs showing the highest specific activity were CYP3A4, CYP3A7 and to lower extent CYP2C9 and CTP2C8. Michaelis–Menten enzyme kinetics were determined for pooled human liver microsomes, recombinant CYP3A4, CYP3A7 and CYP2C9. Surprisingly, sulfaphenazole appeared to be a potent inhibitor of 5′-hydroxylation of flucloxacillin by both recombinant CYP3A4 and CYP3A7. Conclusions and Implications: The combined results show that the 5′-hydroxylation of flucloxacillin is primarily catalysed by CYP3A4, CYP3A7 and CYP2C9. The large variability of the hepatic expression of these enzymes could affect the formation of 5′-hydroxymethyl flucloxacillin, which may determine the differences in susceptibility to flucloxacillin-induced liver injury. Additionally, the strong inhibition in CYP3A-catalysed flucloxacillin metabolism by sulfaphenazole suggests that unanticipated drug–drug interactions could occur with coadministered drugs

    Effect of UGT2B7*2 and CYP2C8*4 polymorphisms on diclofenac metabolism

    No full text
    The use of diclofenac is associated with rare but severe drug-induced liver injury (DILI) in a very small number of patients. The factors which predispose susceptible patients to hepatotoxicity of diclofenac are still incompletely understood. Formation of protein-reactive metabolites by UDP-glucuronosyl transferases and cytochromes P450 is commonly considered to play an important role, as indicated by the detection of covalent protein adducts and antibodies in the serum of patients suffering from diclofenac-induced liver injury. Since no associations have been found with HLA-alleles, polymorphisms of genes encoding for proteins involved in the disposition of diclofenac may be important. Previous association studies showed that possession of the UGT2B7*2 and CYP2C8*4 alleles is more common in cases of diclofenac-induced DILI. In the present study, the metabolism of diclofenac by UGT2B7*2 and CYP2C8*4 was compared with their corresponding wild-type enzymes. Enzyme kinetic analysis revealed that recombinant UGT2B7*2 showed an almost 6-fold lower intrinsic clearance of diclofenac glucuronidation compared to UGT2B7*1. The mutant CYP2C8*4 showed approximately 35% reduced activity in the 4′-hydroxylation of diclofenac acyl glucuronide. Therefore, a decreased hepatic exposure to diclofenac acyl glucuronide is expected in patients with the UGT2B7*2 genotype. The increased risk for hepatotoxicity, therefore, might be the result from a shift to oxidative bioactivation to cytotoxic quinoneimines

    Classification of Cytochrome P450 1A2 Inhibitors and Non-Inhibitors by Machine Learning Techniques

    No full text
    The cytochrome P450 (P450) superfamily plays an important role in the metabolism of drug compounds, and it is therefore highly desirable to have models that can predict whether a compound interacts with a specific isoform of the P450s. In this work, we provide in silico models for classification of CYP1A2 inhibitors and noninhibitors. Training and test sets consisted of approximately 400 and 7000 compounds, respectively. Various machine learning techniques, such as binary quantitative structure activity relationship, support vector machine (SVM), random forest, kappa nearest neighbor (kNN), and decision tree methods were used to develop in silico models, based on Volsurf and Molecular Operating Environment descriptors. The best models were obtained using the SVM, random forest, and kNN methods in combination with the BestFirst variable selection method, resulting in models with 73 to 76% of accuracy on the test set prediction (Matthews correlation coefficients of 0.51 and 0.52). Finally, a decision tree model based on Lipinski's Rule-of-Five descriptors was also developed. This model predicts 67% of the compounds correctly and gives a simple and interesting insight into the issue of classification. All of the models developed in this work are fast and precise enough to be applicable for virtual screening of CYP1A2 inhibitors or noninhibitors or can be used as simple filters in the drug discovery process. Copyright © 2009 by The American Society for Pharmacology and Experimental Therapeutics

    Human multidrug resistance protein 4 (MRP4) is a cellular efflux transporter for paracetamol glutathione and cysteine conjugates

    No full text
    Contains fulltext : 221726.pdf (Publisher’s version ) (Open Access

    Combining substrate dynamics, binding statistics, and energy barriers to rationalize regioselective hydroxylation of octane and lauric acid by CYP102A1 and mutants

    No full text
    Hydroxylations of octane and lauric acid by Cytochrome P450-BM3 (CYP102A1) wild-type and three active site mutants—F87A, L188Q/A74G, and F87V/L188Q/A74G—were rationalized using a combination of substrate orientation from docking, substrate binding statistics from molecular dynamics simulations, and barrier energies for hydrogen atom abstraction from quantum mechanical calculations. Wild-type BM3 typically hydroxylates medium- to long-chain fatty acids on subterminal (ω−1, ω−2, ω−3) but not the terminal (ω) positions. The known carboxylic anchoring site Y51/R47 for lauric acid, and hydrophobic interactions and steric exclusion, mainly by F87, for octane as well as lauric acid, play a role in the binding modes of the substrates. Electrostatic interactions between the protein and the substrate strongly modulate the substrate's regiodependent activation barriers. A combination of the binding statistics and the activation barriers of hydrogen-atom abstraction in the substrates is proposed to determine the product formation. Trends observed in experimental product formation for octane and lauric acid by wild-type BM3 and the three active site mutants were qualitatively explained. It is concluded that the combination of substrate binding statistics and hydrogen–atom abstraction barrier energies is a valuable tool to rationalize substrate binding and product formation and constitutes an important step toward prediction of product ratios

    Acetaminophen reduces the protein levels of high affinity amino acid permeases and causes tryptophan depletion

    No full text
    In yeast, toxicity of acetaminophen (APAP), a frequently used analgesic and antipyretic drug, depends on ubiquitin-controlled processes. Previously, we showed a remarkable overlap in toxicity profiles between APAP and tyrosine, and a similarity with drugs like rapamycin and quinine, which induce degradation of the amino acid permease Tat2. Therefore, we investigated in yeast whether APAP reduced the expression levels of amino acid permeases. The protein levels of Tat2, Tat1, Mup1 and Hip1 were reduced, while the expression of the general permease Gap1 was increased, consistent with a nutrient starvation response. Overexpression of Tat1 and Tat2, but not Mup1, Hip1 and Gap1 conferred resistance to APAP. A tryptophan auxotrophic strain trp1Δ was more sensitive to APAP than wild-type and addition of tryptophan completely restored the growth restriction of trp1∆ upon APAP exposure, while tyrosine had an additive effect on APAP toxicity. Furthermore, intracellular aromatic amino acid concentrations were reduced upon APAP exposure. This effect was less prominent in ubiquitin-deficient yeast strains that were APAP resistant and showed a reduced degradation of high affinity amino acid permeases. APAP-induced changes in intracellular amino acid concentrations were also detected in hepatoma HepG2 cells indicating significance for humans

    Reduction of antitumour mitosenes in non-aqueous and aqueous environment. An electron spin resonance and cyclic voltammetry study

    Get PDF
    Chemical reduction of mitosenes under aerobic conditions in DMSO showed characteristic ESR signals of the mitosene derived semiquinone free radicals. However, these signals diminished strongly upon addition of water to the reaction mixture, indicating a short lifetime of the mitosene semiquinone free radicals under aqueous conditions. In addition, enzymatic one-electron reduction of these mitosenes with either xanthine oxidase or purified NADPH cytochrome P450 reductase under anaerobic conditions showed no signals of the mitosene semiquinone free radicals. Subsequent cyclic voltammetry measurements demonstrated facilitation of the further one-electron reduction of the mitosene semiquinone free radicals in the presence of water in comparison with non-aqueous conditions. The present results strongly suggest that in the presence of water relatively stable hydroquinones are formed upon reduction of mitosenes. Consequently, the steady state concentrations of mitosene semiquinone free radicals will be lowered substantially in aqueous environment. Thus under physiological conditions, two-electron reduction and formation of the mitosene hydroquinone might be important in processes leading to DNA alkylation by these mitosenes
    corecore