290 research outputs found

    Congenital Juvenile Xanthogranuloma of Foot, a Nodular Lesion: An Unusual Case in 2-month-old Infant

    Get PDF
    A 2-month-old infant presented with a circumscribed nodule on left foot since birth. Excision biopsy showed juvenile xanthogranuloma, an uncommon diagnosis in an unusual site; common sites being head and neck. Uncommon sites are groin, genital organs, limbs and even internal organs. It carries a favorable prognosis

    A comparative study on total phenolic content, reducing power and free radical scavenging activity of aerial parts of Barleria prionitis

    Get PDF
    Context: Barleria prionitis L. (Family Acanthaceae; commonly known as Vajradanti), is an annual shrub, 1–3 feet high, found throughout tropical Asia and in South Africa.Objective: The aim of the present study was to evaluate the antioxidant activity of 50% ethanolic extract of leaf, flower, and stem of B. prionitis by using β carotene bleaching assay, reducing power and free radical scavenging activity (DPPH and hydroxyl radical scavenging activity). Total phenolic content (TPC) was analysed by the Folin–Ciocalteu colorimetric method using gallic acid as standard and expressed as mg/g gallic acid equivalent (GAE).Results: Total phenolic content (TPC) and antioxidant activity (AOA) in B. prionitis leaves were found to be 67.48 mg/g GAE dry plant material and 79.20%. The B. prionitis leaves exhibited strong free radical scavenging activity as evidenced by the low IC50 values in both DPPH (1,1-diphenyl-2-picryl hydrazyl) (336.15 μg/ml) and hydroxyl radical (568.65 μg/ml) methods.Conclusions: The leaf of B. prionitis possesses high phenolic content, potential antioxidant activity, reducing power & radical scavenging activity in comparison to flower and stem.Keywords: Barleria prionitis, total phenolic content, β carotene bleaching assay, reducing power, free radical scavenging activity

    Single-shot quantum memory advantage in the simulation of stochastic processes

    Full text link
    Stochastic processes underlie a vast range of natural and social phenomena. Some processes such as atomic decay feature intrinsic randomness, whereas other complex processes, e.g. traffic congestion, are effectively probabilistic because we cannot track all relevant variables. To simulate a stochastic system's future behaviour, information about its past must be stored and thus memory is a key resource. Quantum information processing promises a memory advantage for stochastic simulation that has been validated in recent proof-of-concept experiments. Yet, in all past works, the memory saving would only become accessible in the limit of a large number of parallel simulations, because the memory registers of individual quantum simulators had the same dimensionality as their classical counterparts. Here, we report the first experimental demonstration that a quantum stochastic simulator can encode the relevant information in fewer dimensions than any classical simulator, thereby achieving a quantum memory advantage even for an individual simulator. Our photonic experiment thus establishes the potential of a new, practical resource saving in the simulation of complex systems

    Anticipatory anti-colonial writing in R.K. Narayan's Swami and Friends and Mulk Raj Anand's Untouchable

    Get PDF
    This article uses the term “anticipatory anti-colonial writing” to discuss the workings of time in R.K. Narayan’s Swami and Friends and Mulk Raj Anand’s Untouchable. Both these first novels were published in 1935 with the support of British literary personalities (Graham Greene and E.M. Forster respectively) and both feature young protagonists who, in contrasting ways, are engaged in Indian resistance to colonial rule. This study examines the difference between Narayan’s local, though ironical, resistance to the homogenizing temporal demands of empire and Anand’s awkwardly modernist, socially committed vision. I argue that a form of anticipation that explicitly looks forward to decolonization via new and transnational literary forms is a crucial feature of Untouchable that is not found in Swami and Friends, despite the latter’s anti-colonial elements. Untouchable was intended to be a “bridge between the Ganges and the Thames” and anticipates postcolonial negotiations of time that critique global inequalities and rely upon the multidirectional global connections forged by modernism

    Extra Cellular Matrix Derived Metabolite Regulates Angiogenesis by FasL Mediated Apoptosis

    Get PDF
    OBJECT: Antiangiogenic treatments are beginning to give promising outcomes in many vascular diseases including tumor angiogenesis. In this current study the antiangiogenic and pro-apoptotic actions of α1(IV)NC1 and its N- and C- peptides α1S1(IV)NC1, α1S2(IV)NC1 were investigated in-vitro and in-vivo. STUDY METHOD: Endothelial cells (ECs) were treated with α1(IV)NC1, α1S1(IV)NC1, α1S2(IV)NC1 and in-vitro proliferation, migration, tube formation and apoptotic assays were executed. FasL, Fas, Caspase-8, -3 and PARP activations were studied using immunoblotting analysis using specific antibodies. Also the in-vivo antiangiogenic and pro-apoptotic effects were tested using α1(IV)NC1 in a mice model. RESULTS: Like α1(IV)NC1, its N- and C- terminal α1S2(IV)NC1 and α1S1(IV)NC1 domains posses anti-proliferative, pro-apoptotic activity and inhibit ECs migration and tube formation in-vitro. Both α1S1(IV)NC1 and α1S2(IV)NC1 domains promote apoptosis by activating FasL and down stream apoptotic events including activation of caspase-8, -3 and PARP cleavage in a dose dependent manner in-vitro in ECs. Tumors in mice showed apoptotic TUNEL positive microvasculature upon α1(IV)NC1 treatment, indicating inhibition of tumor angiogenesis and tumor growth. Further, the antitumor activity of α1(IV)NC1 was abrogated when caspase-3 inhibitor was used. These results conform additional properties of α1(IV)NC1 as an endogenous angioinhibitor that induces apoptosis in-vitro and in-vivo by activating FasL mediated caspase-3. SIGNIFICANCE: α1(IV)NC1 and its N- and C- terminal α1S1(IV)NC1 and α1S2(IV)NC1 domains also posses pro-apoptotic and angioinhibitory activity in-vitro and in-vivo. α1(IV)NC1 regulates tumor angiogenesis by activating FasL mediated apoptosis in-vitro and in-vivo. These results demonstrate that α1(IV)NC1 and its peptides inhibit neo-vascular diseases

    Porphyromonas gingivalis and Treponema denticola Mixed Microbial Infection in a Rat Model of Periodontal Disease

    Get PDF
    Porphyromonas gingivalis and Treponema denticola are periodontal pathogens that express virulence factors associated with the pathogenesis of periodontitis. In this paper we tested the hypothesis that P. gingivalis and T. denticola are synergistic in terms of virulence; using a model of mixed microbial infection in rats. Groups of rats were orally infected with either P. gingivalis or T. denticola or mixed microbial infections for 7 and 12 weeks. P. gingivalis genomic DNA was detected more frequently by PCR than T. denticola. Both bacteria induced significantly high IgG, IgG2b, IgG1, IgG2a antibody levels indicating a stimulation of Th1 and Th2 immune response. Radiographic and morphometric measurements demonstrated that rats infected with the mixed infection exhibited significantly more alveolar bone loss than shaminfected control rats. Histology revealed apical migration of junctional epithelium, rete ridge elongation, and crestal alveolar bone resorption; resembling periodontal disease lesion. These results showed that P. gingivalis and T. denticola exhibit no synergistic virulence in a rat model of periodontal disease

    Multiple exciton generation in VO2

    Full text link
    Multiple exciton generation (MEG) is a widely studied phenomenon in semiconductor nanocrystals and quantum dots, aimed at improving the energy conversion efficiency of solar cells. MEG is the process wherein incident photon energy is significantly larger than the band gap, and the resulting photoexcited carriers relax by generating additional electron-hole pairs, rather than decaying by heat dissipation. Here, we present an experimental demonstration of MEG in a prototype strongly correlated material, VO2, through photocurrent spectroscopy and ultrafast transient reflectivity measurements, both of which are considered the most prominent ways for detecting MEG in working devices. The key result of this paper is the observation of MEG at room temperature (in a correlated insulating phase of VO2), and the estimated threshold for MEG is 3Eg. We demonstrate an escalated photocurrent due to MEG in VO2, and quantum efficiency is found to exceed 100%. Our studies suggest that this phenomenon is a manifestation of expeditious impact ionization due to stronger electron correlations and could be exploited in a large number of strongly correlated materials.Comment: 6 pages, 5 figures, Physical Review

    Histidylated lipid-modified sendai viral envelopes mediate enhanced membrane fusion and potentiate targeted gene delivery

    Get PDF
    Recent studies have demonstrated that covalent grafting of a single histidine residue into a twin-chain aliphatic hydrocarbon compound enhances its endosome-disrupting properties and thereby generates an excellent DNA transfection system. Significant increase in gene delivery efficiencies has thus been obtained by using endosome-disrupting multiple histidine functionalities in the molecular architecture of various cationic polymers. To take advantage of this unique feature, we have incorporated L-histidine (N,N-di-n-hexadecylamine) ethylamide (L(H)) in the membrane of hepatocyte-specific Sendai virosomes containing only the fusion protein (F-virosomes (Process for Producing a Targeted Gene (Sarkar, D. P., Ramani, K., Bora, R. S., Kumar, M., and Tyagi, S. K. (November 4, 1997) U. S. Patent 5,683,866))). Such L(H)-modified virosomal envelopes were four times more (p <0.001) active in terms of fusion with its target cell membrane. On the other hand, the presence of L(H) in reconstituted influenza and vesicular stomatitis virus envelopes failed to enhance spike glycoprotein-induced membrane fusion with host cell membrane. Circular dichroism and limited proteolysis experiments with F-virosomes indicated that the presence of L(H) leads to conformational changes in the F protein. The molecular mechanism associated with the increased membrane fusion induced by L(H) has been addressed in the light of fusion-competent conformational change in F protein. Such enhancement of fusion resulted in a highly efficient gene delivery system specific for liver cells in culture and in whole animals

    Enhanced Cardiac Regenerative Ability of Stem Cells After Ischemia-Reperfusion Injury Role of Human CD34+ Cells Deficient in MicroRNA-377

    Get PDF
    AbstractBackgroundMicroRNA (miR) dysregulation in the myocardium has been implicated in cardiac remodeling after injury or stress.ObjectivesThe aim of this study was to explore the role of miR in human CD34+ cell (hCD34+) dysfunction in vivo after transplantation into the myocardium under ischemia-reperfusion (I-R) conditions.MethodsIn response to inflammatory stimuli, the miR array profile of endothelial progenitor cells was analyzed using a polymerase chain reaction–based miR microarray. miR-377 expression was assessed in myocardial tissue from human patients with heart failure (HF). We investigated the effect of miR-377 inhibition on an hCD34+ cell angiogenic proteome profile in vitro and on cardiac repair and function after I-R injury in immunodeficient mice.ResultsThe miR array data from endothelial progenitor cells in response to inflammatory stimuli indicated changes in numerous miR, with a robust decrease in the levels of miR-377. Human cardiac biopsies from patients with HF showed significant increases in miR-377 expression compared with nonfailing control hearts. The proteome profile of hCD34+ cells transfected with miR-377 mimics showed significant decrease in the levels of proangiogenic proteins versus nonspecific control–transfected cells. We also validated that serine/threonine kinase 35 is a target of miR-377 using a dual luciferase reporter assay. In a mouse model of myocardial I-R, intramyocardial transplantation of miR-377 silenced hCD34+ cells in immunodeficient mice, promoting neovascularization (at 28 days, post–I-R) and lower interstitial fibrosis, leading to improved left ventricular function.ConclusionsThese findings indicate that HF increased miR-377 expression in the myocardium, which is detrimental to stem cell function, and transplantation of miR-377 knockdown hCD34+ cells into ischemic myocardium promoted their angiogenic ability, attenuating left ventricular remodeling and cardiac fibrosis

    Conclusive experimental demonstration of one-way Einstein-Podolsky-Rosen steering

    Get PDF
    Einstein-Podolsky-Rosen steering is a quantum phenomenon wherein one party influences, or steers, the state of a distant party's particle beyond what could be achieved with a separable state, by making measurements on one half of an entangled state. This type of quantum nonlocality stands out through its asymmetric setting, and even allows for cases where one party can steer the other, but where the reverse is not true. A series of experiments have demonstrated one-way steering in the past, but all were based on significant limiting assumptions. These consisted either of restrictions on the type of allowed measurements, or of assumptions about the quantum state at hand, by mapping to a specific family of states and analysing the ideal target state rather than the real experimental state. Here, we present the first experimental demonstration of one-way steering free of such assumptions. We achieve this using a new sufficient condition for non-steerability, and, although not required by our analysis, using a novel source of extremely high-quality photonic Werner states.Comment: Supplemental Material included in the documen
    corecore