92 research outputs found

    2-Alkynylarylnitrile: an emerging precursor for the generation of carbo- and heterocycles

    Get PDF
    In the pursuit of a coherent synthetic route for the synthesis of carbo- and heterocycles, 2-alkynylarylnitrile has been recognized as a useful and versatile building block in organic synthesis due to the dual capacity of this precursor to act with a nucleophilic of electrophilic nature. The alkynes implanted at the ortho position improved the reactivity of the substrate for tandem cyclization and annulations, which led to the synthesis of diverse and complex cyclic compounds. This mini review summarizes the literature on the synthetic transformations of 2-alkynylarylnitrile into biologically relevant heterocycles as well as carbocycles such as isoindoles, isoquinolines, naphthalenes, and indenones as well as building blocks for the synthesis of various natural products. We hope that this concise review will be a promissory entry for future research in this area

    Efficacy of Sweet Potato Powder and Added Water as Fat Replacer on the Quality Attributes of Low-fat Pork Patties

    Get PDF
    The present study was conducted to investigate the efficacy of sweet potato powder (SPP) and water as a fat replacer in low-fat pork patties. Low-fat pork patties were developed by replacing the added fat with combinations of SPP and chilled water. Three different levels of SPP/chilled water viz. 0.5/9.5% (T-1), 1.0/9.0% (T-2), and 1.5/8.5% (T-3) were compared with a control containing 10% animal fat. The quality of low-fat pork patties was evaluated for physico-chemical (pH, emulsion stability, cooking yield, aw), proximate, instrumental colour and textural profile, and sensory attributes. The cooking yield and emulsion stability improved (p<0.05) in all treatments over the control and were highest in T-2. Instrumental texture profile attributes and hardness decreased, whereas cohesiveness increased compared with control, irrespective of SPP level. Dimensional parameters (% gain in height and % decrease in diameter) were better maintained during cooking in the low-fat product than control. The sensory quality attributes juiciness, texture and overall acceptability of T-2 and T-3 were (p<0.05) higher than control. Results concluded that low-fat pork patties with acceptable sensory attributes, improved cooking yield and textural attributes can be successfully developed with the incorporation of a combination of 1.0% SPP and 9.0% chilled water

    OsJAZ11 regulates phosphate starvation responses in rice

    Get PDF
    Main conclusion: OsJAZ11 regulates phosphate homeostasis by suppressing jasmonic acid signaling and biosynthesis in rice roots. Abstract: Jasmonic Acid (JA) is a key plant signaling molecule which negatively regulates growth processes including root elongation. JAZ (JASMONATE ZIM-DOMAIN) proteins function as transcriptional repressors of JA signaling. Therefore, targeting JA signaling by deploying JAZ repressors may enhance root length in crops. In this study, we overexpressed JAZ repressor OsJAZ11 in rice to alleviate the root growth inhibitory action of JA. OsJAZ11 is a low phosphate (Pi) responsive gene which is transcriptionally regulated by OsPHR2. We report that OsJAZ11 overexpression promoted primary and seminal root elongation which enhanced Pi foraging. Expression studies revealed that overexpression of OsJAZ11 also reduced Pi starvation response (PSR) under Pi limiting conditions. Moreover, OsJAZ11 overexpression also suppressed JA signaling and biosynthesis as compared to wild type (WT). We further demonstrated that the C-terminal region of OsJAZ11 was crucial for stimulating root elongation in overexpression lines. Rice transgenics overexpressing truncated OsJAZ11ΔC transgene (i.e., missing C-terminal region) exhibited reduced root length and Pi uptake. Interestingly, OsJAZ11 also regulates Pi homeostasis via physical interaction with a key Pi sensing protein, OsSPX1. Our study highlights the functional connections between JA and Pi signaling and reveals JAZ repressors as a promising candidate for improving low Pi tolerance of elite rice genotypes

    Identification of Clinical Immunological Determinants in Asymptomatic VL and Post Kala-azar Dermal Leishmaniasis Patients

    Get PDF
    Background: Visceral Leishmaniasis (VL) caused by protozoa belonging to the genus Leishmania, usually have anthroponotic mode of transmission and is issue of great public health importance in Indian subcontinent. Asymptomatic cases of VL and PKDL are subject of keen interest to find their role in the transmission of VL in epidemic areas. We evaluated the immunological cytokine determinants expressed in most clinical suspects of asymptomatic VL and PKDL (IL-10, IFN-γ, and TNF-α). Methods: Eighty-four participants were included at RMRIMS, Patna, India in 2016-17 out of which 64 asymptomatic individual positive for rK-39, without sign and symptoms of VL; 15 PKDL patient’s with past history of VL and 5 endemic healthy subjects were recruited from VL endemic areas. DAT and quantitative assessment of plasma cytokines was determined from the blood samples collected in a plain and sodium-EDTA vacutainer respectively from the subjects. Results: The mean level of IL-10 in DATposLOW of asymptomatic VL and PKDL was significantly higher than endemic healthy (P<0.05). The cytokine polarization index (IFN-γ versus IL-10) was significantly low in PKDL cases compared with asymptomatic VL cases in DATposLOW titre (P<0.05). This index was low again but statistically not significant in PKDL than in asymptomatic VL when TNF-α was considered against IL-10. The ratio of IFN-γ: IL-10 and TNF-α: IL-10 was observed decreased both in asymptomatic VL and PKDL cases than in healthy from endemic areas. Conclusion: Collectively we surmise from our data that asymptomatic VL can also play an important role like PKDL in transmission of VL

    Integrating transcriptomic and proteomic data for accurate assembly and annotation of genomes

    Get PDF
    © 2017 Wong et al.; Published by Cold Spring Harbor Laboratory Press. Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted noncoding RNAs to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes

    <i>o</i>‑Alkynylaryl 2‑Cyanoacrylates: A Synthon for the Construction of Diverse Isoquinolones/Napthyridinones

    No full text
    o-Alkynylaryl 2-cyanoacrylates have been disclosed as a new synthon for the regioselective synthesis of isoquinolones and naphthyridinones under mild reaction conditions. The attractive feature of this investigation includes carbon–carbon double bond cleavage under metal-free conditions by an intramolecular SN2 reaction. Incorporating two distinct C–I bonds in the resulting products provides facile opportunity for structural elaboration. The viability of the present protocol was unveiled by postfunctionalization with drug analogues and gram-scale synthesis
    • …
    corecore