18 research outputs found

    Lens shape and refractive index distribution in type 1 diabetes

    Get PDF
    To compare lens dimensions and refractive index distributions in type 1 diabetes and age-matched control groups.There were 17 participants with type 1 diabetes, consisting of two subgroups (7 young [23 ± 4 years] and 10 older [54 ± 4 years] participants), with 23 controls (13 young, 24 ± 4 years; 10 older, 55 ± 4 years). For each participant, one eye was tested with relaxed accommodation. A 3T clinical magnetic resonance imaging scanner was used to image the eye, employing a multiple spin echo (MSE) sequence to determine lens dimensions and refractive index profiles along the equatorial and axial directions.The diabetes group had significantly smaller lens equatorial diameters and larger lens axial thicknesses than the control group (diameter mean ± 95% confidence interval [CI]: diabetes group 8.65 ± 0.26 mm, control group 9.42 ± 0.18 mm; axial thickness: diabetes group 4.33 ± 0.30 mm, control group 3.80 ± 0.14 mm). These differences were also significant within each age group. The older group had significantly greater axial thickness than the young group (older group 4.35 ± 0.26 mm, young group 3.70 ± 0.25 mm). Center refractive indices of diabetes and control groups were not significantly different. There were some statistically significant differences between the refractive index fitting parameters of young and older groups, but not between diabetes and control groups of the same age.Smaller lens diameters occurred in the diabetes groups than in the age-matched control groups. Differences in refractive index distribution between persons with and without diabetes are too small to have important effects on instruments measuring axial thickness

    IMI-Onset and Progression of Myopia in Young Adults

    Get PDF
    Myopia typically starts and progresses during childhood, but onset and progression can occur during adulthood. The goals of this review are to summarize published data on myopia onset and progression in young adults, aged 18 to 40 years, to characterize myopia in this age group, to assess what is currently known, and to highlight the gaps in the current understanding. Specifically, the peer-reviewed literature was reviewed to: characterize the timeline and age of stabilization of juvenile-onset myopia; estimate the frequency of adult-onset myopia; evaluate the rate of myopia progression in adults, regardless of age of onset, both during the college years and later; describe the rate of axial elongation in myopic adults; identify risk factors for adult onset and progression; report myopia progression and axial elongation in adults who have undergone refractive surgery; and discuss myopia management and research study design. Adult-onset myopia is common, representing a third or more of all myopia in western populations, but less in East Asia, where onset during childhood is high. Clinically meaningful myopia progression continues in early adulthood and may average 1.00 diopters (D) between 20 and 30 years. Higher levels of myopia are associated with greater absolute risk of myopia-related ocular disease and visual impairment, and thus myopia in this age group requires ongoing management. Modalities established for myopia control in children would be options for adults, but it is difficult to predict their efficacy. The feasibility of studies of myopia control in adults is limited by the long duration required.</p

    IMI-Management and Investigation of High Myopia in Infants and Young Children

    Get PDF
    The purpose of this study was to evaluate the epidemiology, etiology, clinical assessment, investigation, management, and visual consequences of high myopia (≤−6 diopters [D]) in infants and young children

    Posterior eye shape measurement with retinal OCT compared to MRI

    Get PDF
    PURPOSE. Posterior eye shape assessment by magnetic resonance imaging (MRI) is used to study myopia. We tested the hypothesis that optical coherence tomography (OCT), as an alternative, could measure posterior eye shape similarly to MRI. METHODS. Macular spectral-domain OCT and brain MRI images previously acquired as part of the Singapore Epidemiology of Eye Diseases study were analyzed. The right eye in the MRI and OCT images was automatically segmented. Optical coherence tomography segmentations were corrected for optical and display distortions requiring biometry data. The segmentations were fitted to spheres and ellipsoids to obtain the posterior eye radius of curvature (Rc) and asphericity (Qxz). The differences in Rc and Qxz measured by MRI and OCT were tested using paired t-tests. Categorical assignments of prolateness or oblateness using Qxz were compared. RESULTS. Fifty-two subjects (67.8 ± 5.6 years old) with spherical equivalent refraction from +0.50 to -5.38 were included. The mean paired difference between MRI and original OCT posterior eye Rc was 24.03 ± 46.49 mm (P = 0.0005). For corrected OCT images, the difference in Rc decreased to -0.23 ± 2.47 mm (P = 0.51). The difference between MRI and OCT asphericity, Qxz, was -0.052 ± 0.343 (P = 0.28). However, categorical agreement was only moderate (j = 0.50). CONCLUSIONS. Distortion-corrected OCT measurements of Rc and Qxz were not statistically significantly different from MRI, although the moderate categorical agreement suggests that individual differences remained. This study provides evidence that with distortion correction, noninvasive office-based OCT could potentially be used instead of MRI for the study of posterior eye shape

    Repeatability and comparison of peripheral eye lengths with two instruments

    No full text
    Purpose: To assess intrasessional and intersessional repeatability of two commercial partial coherence interferometry instruments for measuring peripheral eye lengths and to investigate the agreement between the two instruments.\ud \ud Methods: Central and peripheral eye lengths were determined with the IOLMaster (Carl-Zeiss Meditec AG, Jena, Germany) and the Lenstar (Haag Streit, Bern, Switzerland) in seven adults. Measurements were performed out to 35° and 30° from fixation for horizontal and vertical visual fields, respectively, in 5° intervals. An external fixation target at optical infinity was used. At least four measurements were taken at each location for each instrument, and measurements were taken at two sessions.\ud \ud Results: The mean intrasessional SDs for the IOLMaster along both the horizontal and vertical visual fields were 0.04 ± 0.04 mm; corresponding results for the Lenstar were 0.02 ± 0.02 mm along both fields. The intersessional SDs for the IOLMaster for the horizontal and vertical visual fields were ±0.11 and ±0.08 mm, respectively; corresponding limits for the Lenstar were ±0.05 and ±0.04 mm. The intrasessional and intersessional variability increased away from fixation. The mean differences between the two instruments were 0.01 ± 0.07 mm and 0.02 ± 0.07 mm in the horizontal and vertical visual fields, but the lengths with the Lenstar became greater than those with the IOLMaster as axial length increased (rate of approximately 0.016 mm/mm).\ud \ud Conclusions: Both the IOLMaster and the Lenstar demonstrated good intrasessional and intersessional repeatability for peripheral eye length measurements, with the Lenstar showing better repeatability. The Lenstar would be expected to give a slightly greater range of eye lengths than the IOLMaster across the visual field

    Peripheral refraction, peripheral eye length, and retinal shape in myopia

    No full text
    Purpose: To investigate how peripheral refraction and peripheral eye length are related to retinal shape.\ud \ud Methods: Relative peripheral refraction RPR and relative peripheral eye length RPEL were determined in 36 young adults (M +0.75D to −5.25D) along horizontal and vertical visual field meridians to ±35° and ±30°, respectively. Retinal shape was determined in terms of vertex radius of curvature Rv, asphericity Q and equivalent radius of curvature REq using a partial coherence interferometry method involving peripheral eye lengths and model eye raytracing. Second order polynomial fits were applied to RPR and RPEL as functions of visual field position. Linear regressions were determined for the fits’ second order co-efficients and for retinal shape estimates as functions of central spherical refraction. Linear regressions investigate relationships of RPR and RPEL with retinal shape estimates. \ud \ud Results: Peripheral refraction, peripheral eye lengths and retinal shapes were significantly affected by meridian and refraction. More positive (hyperopic) relative peripheral refraction, more negative RPELs and steeper retinas were found along the horizontal than along the vertical meridian and in myopes than in emmetropes. RPR and RPEL, as represented by their second order fit coefficients, correlated significantly with retinal shape represented by REq.\ud \ud Conclusion: Effects of meridian and refraction on RPR and PEL patterns are consistent with effects on retinal shape. Patterns derived from one of these predict the others: more positive (hyperopic) RPR predicts more negative RPEL and steeper retinas, more negative RPEL predicts more positive relative peripheral refraction and steeper retinas, and steeper retinas derived from peripheral eye lengths predict more positive RPR

    Three-dimensional MRI study of the relationship between eye dimensions, retinal shape and myopia

    Get PDF
    We investigated changes in eye dimensions and retinal shape with degree of myopia, gender and race. There were 58 young adult emmetropes and myopes (range –1.25D to −8.25D), with 30 East-Asians (21 female/9 male), 23 Caucasians (16/7) and 5 South-Asians (1/4). Three-dimensional magnetic resonance imaging was undertaken with a 3.0 Tesla whole-body clinical MRI system using a 4.0 cm receive-only surface coil positioned over the eye. Automated methods determined eye length, width and height, and curve fitting procedures determined asymmetric and symmetric ellipsoid shapes to 75%, 55% and 35% of the retina. With myopia increase, eye dimensions increased in all directions such that increase\ud in length was considerably greater than increases in width and height. Emmetropic retinas were oblate (steepening away from the vertex) but oblateness decreased with the increase in myopia, so that retinas were approximately spherical at 7 to 8D myopia. Asymmetry of eyes about the best fit visual axis was generally small, with small differences between the vertex radii of curvature and between asphericities in the axial and sagittal planes. Females had smaller eyes than males, with overall dimensions being about 0.5mm less for the former. Race appeared not to have a systematic effect
    corecore