15 research outputs found

    Spin-1/2 XXZ Diamond Chain within the Jordan-Wigner Fermionization Approach

    Get PDF
    The spin-1/2 XXZ diamond chain is considered within the Jordan-Wigner fermionization. The fermionized Hamiltonian contains the interacting terms which are treated within the Hartree-Fock approximation. We obtain the ground-state magnetization curve of the model for some particular cases and compare the results with the exact diagonalization data for finite chains of 30 spins and known exact results. We also analyze the validity of the suggested approximation

    Dynamic properties of the spin-1/2 XY chain with three-site interactions

    Full text link
    We consider a spin-1/2 XY chain in a transverse (z) field with multi-site interactions. The additional terms introduced into the Hamiltonian involve products of spin components related to three adjacent sites. A Jordan-Wigner transformation leads to a simple bilinear Fermi form for the resulting Hamiltonian and hence the spin model admits a rigorous analysis. We point out the close relationships between several variants of the model which were discussed separately in previous studies. The ground-state phases (ferromagnet and two kinds of spin liquid) of the model are reflected in the dynamic structure factors of the spin chains, which are the main focus in this study. First we consider the zz dynamic structure factor reporting for this quantity a closed-form expression and analyzing the properties of the two-fermion (particle-hole) excitation continuum which governs the dynamics of transverse spin component fluctuations and of some other local operator fluctuations. Then we examine the xx dynamic structure factor which is governed by many-fermion excitations, reporting both analytical and numerical results. We discuss some easily recognized features of the dynamic structure factors which are signatures for the presence of the three-site interactions.Comment: 28 pages, 10 fugure

    Exact evidence for the spontaneous antiferromagnetic long-range order in the two-dimensional hybrid model of localized Ising spins and itinerant electrons

    Full text link
    The generalized decoration-iteration transformation is adopted to treat exactly a hybrid model of doubly decorated two-dimensional lattices, which have localized Ising spins at their nodal lattice sites and itinerant electrons delocalized over pairs of decorating sites. Under the assumption of a half filling of each couple of the decorating sites, the investigated model system exhibits a remarkable spontaneous antiferromagnetic long-range order with an obvious quantum reduction of the staggered magnetization. It is shown that the critical temperature of the spontaneously long-range ordered quantum antiferromagnet displays an outstanding non-monotonic dependence on a ratio between the kinetic term and the Ising-type exchange interaction.Comment: 8 pages, 6 figure

    Magnetic properties of the quantum spin-1/2 XX diamond chain: The Jordan-Wigner approach

    Full text link
    The Jordan-Wigner transformation is applied to study magnetic properties of the quantum spin-1/2 XXXX model on the diamond chain. Generally, the Hamiltonian of this quantum spin system can be represented in terms of spinless fermions in the presence of a gauge field and different gauge-invariant ways of assigning the spin-fermion transformation are considered. Additionally, we analyze general properties of a free-fermion chain, where all gauge terms are neglected and discuss their relevance for the quantum spin system. A consideration of interaction terms in the fermionic Hamiltonian rests upon the Hartree-Fock procedure after fixing the appropriate gauge. Finally, we discuss the magnetic properties of this quantum spin model at zero as well as non-zero temperatures and analyze the validity of the approximation used through a comparison with the results of the exact diagonalization method for finite (up to 36 spins) chains. Besides the m=1/3m=1/3 plateau the most prominent feature of the magnetization curve is a jump at intermediate field present for certain values of the frustrating vertical bond.Comment: 12 pages, 9 figures, accepted for publication in Eur. Phys. J.
    corecore