81 research outputs found

    Factors influencing the use of therapeutic footwear in persons with diabetes mellitus and loss of protective sensation:A focus group study

    Get PDF
    Background Persons with diabetes mellitus (DM) and loss of protective sensation (LOPS) due to peripheral neuropathy do not use their therapeutic footwear (TF) consistently. TF is essential to prevent foot ulceration. In order to improve compliance in using TF, influencing factors need to be identified and analyzed. Persons with a history of foot ulceration may find different factors important compared with persons without ulceration or persons who have never used TF. Therefore, the objective of this study was to determine factors perceived as important for the use of TF by different groups of persons with DM and LOPS. Method A qualitative study was performed using focus group discussions. Subjects (n = 24) were divided into 3 focus groups based on disease severity: ulcer history (HoU) versus no ulcer history (no-HoU) and experience with TF (TF) versus no experience (no-TF). For each group of 8 subjects (TF&amp;HoU; TF&amp;no-HoU; no-TF&amp;no-HoU), an online focus group discussion was organized to identify the most important influencing factors. Transcribed data were coded with Atlas.ti. The analysis was performed following the framework approach. Results The factors comfort and fit and stability/balance were ranked in the top 3 of all groups. Usability was ranked in the top 3 of group-TF&amp;noHoU and group-noTF&amp;noHoU. Two other factors, reducing pain and preventing ulceration were ranked in the top 3 of group-TF&amp;no- HoU and group-TF&amp;HoU, respectively. Conclusion Experience with TF and a HoU influence which factors are perceived as important for TF use. Knowledge of these factors during the development and prescription process of TF may lead to increased compliance. Although the main medical reason for TF prescription is ulcer prevention, only 1 group gave this factor a high ranking. Therefore, next to focusing on influencing factors, person-centered education on the importance of using TF to prevent ulcers is also required.</p

    Treating natural disaster victims is dealing with shortages:An orthopaedics perspective

    Get PDF
    During natural disasters such as earthquakes or tsunamis, most of the casualties are known to suffer from musculoskeletal injuries. This leads to an enormous need of orthopaedic (surgical) implants such as osteosynthesis plates, which are difficult to provide in developing countries that rely on imported ones. One of the alternatives is utilization of local resources, but only after they have been proven safe to use, and meet the international standards set. Through this paper we would like to urge the international community to include locally produced biomedical products, like osteosynthesis plates in their scientific evaluations and communications. When the quality of local products is proven, the reluctance to use local products also by surgeons from developing countries will disappear and larger scale production can be initiated. This in its turn solves many problems that come after natural disasters and stimulates the national economy in an efficient and effective way

    Ten cold clubfeet

    Get PDF
    Background and purpose — Idiopathic clubfeet are commonly treated with serial manipulation and casting, known as the Ponseti method. The use of Plaster of Paris as casting material causes both exothermic and endothermic reactions. The resulting temperature changes can create discomfort for patients. Patients and methods — In 10 patients, we used a digital thermometer with a data logger to measure below-cast temperatures to create a thermal profile of the treatment process. Results — After the anticipated temperature peak, a surprisingly large dip was observed (Tmin = 26 °C) that lasted 12 hours. Interpretation — Evaporation of excess water from a cast might be a cause for discomfort for clubfoot patients and subsequently, their caregivers

    Pulmonary versus aortic pressure behavior of a bovine pericardial valve

    Get PDF
    Background: The Carpentier Edwards Perimount Magna Ease aortic valvular prosthesis (Edwards Lifesciences, Irvine, Calif) has been among the most frequently and successfully used tissue prosthetic cardiac valves. Furthermore, this prosthesis has been used off-label in the pulmonary position. Until now, there has been a paucity of data regarding the functioning of tissue prosthetic valves under pulmonary conditions. Methods: Using a pulse duplicator, hydrodynamic characteristics of a 21-mm and 25-mm Magna Ease valve were evaluated. Among parameters evaluated were leakage orifice area, closing time (ie, time required to close), and leakage duration. This procedure was performed under different pulmonic pressure conditions (15/5 mm Hg, 28/11 mm Hg, 73/32 mm Hg) and normal aortic pressure (120/80 mm Hg) as a reference. Moving images were obtained using a Phantom MIRO M320S high-speed camera (Vision Research Inc, Wayne, NJ) at 600 frames per second and used to analyze valve area in closed position. Results: Under normal pulmonic conditions (28/11 mm Hg) the leakage orifice area was 0.020 ± 0.012 mm2 for the 21-mm valve and 0.054 ± 0.041 mm2 for the 25-mm valve (P = .03). Hydrodynamic characteristics of the valves differed between pulmonary and aortic testing condition. Valve closing volumes were significantly lower under pulmonary hypotension and normal pulmonary conditions than under normal aortic conditions (P < .05). Conclusions: Under normal pulmonary pressure conditions, the hydrodynamic characteristics of Magna Ease valves are significantly different compared with aortic conditions. Further research is needed to determine whether these results are associated with prosthetic valve failure

    The potential of spring distraction to dynamically correct complex spinal deformities in the growing child

    Get PDF
    Purpose: Current treatment of progressive early onset scoliosis involves growth-friendly instrumentation if conservative treatment fails. These implants guide growth by passive sliding or repeated lengthenings. None of these techniques provide dynamic correction after implantation. We developed the spring distraction system (SDS), by using one or multiple compressed springs positioned around a standard sliding rod, to provide active continuous distraction of the spine to stimulate growth and further correction. The purpose of this study was to determine feasibility and proof of concept of the SDS. Methods: We developed a versatile, dynamic spring distraction system for patients who would benefit from active continuous distraction. This prospective case series evaluates four patients with exceptional and progressive congenital spine deformities. Results: Four patients had a mean age of 6.8 years at surgery with a mean follow-up of 36 months (range 25–45). The mean progressive thoracic lordosis, which was the reason for initiating surgical treatment in two patients, changed from 32° lordosis preoperatively to 1° kyphosis post-operatively. During follow-up, this further improved to 32° thoracic kyphosis. In the two other patients, with cervicothorcacic scoliosis, the main coronal curve improved from 79° pre-operatively to 56° post-operatively and further improved to 42°. The mean T1-S1 spine growth during follow-up for all patients was 1.3 cm/year. There was one reoperation because of skin problems and no device-failures. Conclusion: These early results show the feasibility and the proof of concept of spring-based distraction as a dynamic growth-enhancing system with the potential of further correction of the deformity after implantation

    Overview and Strategy Analysis of Technology-Based Nonpharmacological Interventions for In-Hospital Delirium Prevention and Reduction:Systematic Scoping Review

    Get PDF
    BACKGROUND: Delirium prevention is crucial, especially in critically ill patients. Nonpharmacological multicomponent interventions for preventing delirium are increasingly recommended and technology-based interventions have been developed to support them. Despite the increasing number and diversity in technology-based interventions, there has been no systematic effort to create an overview of these interventions for in-hospital delirium prevention and reduction. OBJECTIVE: This systematic scoping review was carried out to answer the following questions: (1) what are the technologies currently used in nonpharmacological technology-based interventions for preventing and reducing delirium? and (2) what are the strategies underlying these currently used technologies? METHODS: A systematic search was conducted in Scopus and Embase between 2015 and 2020. A selection was made in line with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Studies were eligible if they contained any type of technology-based interventions and assessed delirium-/risk factor–related outcome measures in a hospital setting. Data extraction and quality assessment were performed using a predesigned data form. RESULTS: A total of 31 studies were included and analyzed focusing on the types of technology and the strategies used in the interventions. Our review revealed 8 different technology types and 14 strategies that were categorized into the following 7 pathways: (1) restore circadian rhythm, (2) activate the body, (3) activate the mind, (4) induce relaxation, (5) provide a sense of security, (6) provide a sense of control, and (7) provide a sense of being connected. For all technology types, significant positive effects were found on either or both direct and indirect delirium outcomes. Several similarities were found across effective interventions: using a multicomponent approach or including components comforting the psychological needs of patients (eg, familiarity, distraction, soothing elements). CONCLUSIONS: Technology-based interventions have a high potential when multidimensional needs of patients (eg, physical, cognitive, emotional) are incorporated. The 7 pathways pinpoint starting points for building more effective technology-based interventions. Opportunities were discussed for transforming the intensive care unit into a healing environment as a powerful tool to prevent delirium. TRIAL REGISTRATION: PROSPERO International Prospective Register of Systematic Reviews CRD42020175874; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=17587

    Induction of a representative idiopathic-like scoliosis in a porcine model using a multidirectional dynamic spring-based system

    Get PDF
    BACKGROUND CONTEXT: Scoliosis is a 3D deformity of the spine in which vertebral rotation plays an important role. However, no treatment strategy currently exists that primarily applies a continuous rotational moment over a long period of time to the spine, while preserving its mobility. We developed a dynamic, torsional device that can be inserted with standard posterior instrumentation. The feasibility of this implant to rotate the spine and preserve motion was tested in growing mini-pigs. PURPOSE: To test the quality and feasibility of the torsional device to induce the typical axial rotation of scoliosis while maintaining growth and mobility of the spine. STUDY DESIGN: Preclinical animal study with 14 male, 7 month old Gottingen mini-pigs. Comparison of two scoliosis induction methods, with and without the torsional device, with respect to 3D deformity and maintenance of the scoliosis after removal of the implants. METHODS: Fourteen mini-pigs received either a unilateral tether-only (n=6) or a tether combined with a contralateral torsional device (n=8). X-rays and CT-scans were made post-operative, at 8 weeks and at 12 weeks. Flexibility of the spine was assessed at 12 weeks. In 3 mini-pigs per condition, the implants were removed and the animals were followed until no further correction was expected. RESULTS: At 12 weeks the tether-only group yielded a coronal Cobb angle of 16.8±3.3°For the tether combined with the torsional device this was 22.0±4.0°. The most prominent difference at 12 weeks was the axial rotation with 3.6±2.8° for the tether-only group compared to 18.1±4.6° for the tether-torsion group. Spinal growth and flexibility remained normal and comparable for both groups. After removal of the devices, the induced scoliosis reduced by 41% in both groups. There were no adverse tissue reactions, implant complications or infections. CONCLUSION: The present study indicates the ability of the torsional device combined with a tether to induce a flexible idiopathic-like scoliosis in mini-pigs. The torsional device was necessary to induce the typical axial rotation found in human scoliosis. Clinical significance: The investigated torsional device could induce apical rotation in a flexible and growing spine. Whether this may be used to reduce a scoliotic deformity remains to be investigated
    • …
    corecore