500 research outputs found

    The Current Status of Immune Checkpoint Inhibitors in Neuro-Oncology:A Systematic Review

    Get PDF
    The introduction of immune checkpoint inhibitors (ICI), as a novel treatment modality, has transformed the field of oncology with unprecedented successes. However, the efficacy of ICI for patients with glioblastoma or brain metastases (BMs) from any tumor type is under debate. Therefore, we systematically reviewed current literature on the use of ICI in patients with glioblastoma and BMs. Prospective and retrospective studies evaluating the efficacy and survival outcomes of ICI in patients with glioblastoma or BMs, and published between 2006 and November 2019, were considered. A total of 88 studies were identified (n = 8 in glioblastoma and n = 80 in BMs). In glioblastoma, median progression-free (PFS) and overall survival (OS) of all studies were 2.1 and 7.3 months, respectively. In patients with BMs, intracranial responses have been reported in studies with melanoma and non-small-cell lung cancer (NSCLC). The median intracranial and total PFS in these studies were 2.7 and 3.0 months, respectively. The median OS in all studies for patients with brain BMs was 8.0 months. To date, ICI demonstrate limited efficacy in patients with glioblastoma or BMs. Future research should focus on increasing the local and systemic immunological responses in these patients

    Photoactivation of lysosomally sequestered sunitinib after angiostatic treatment causes vascular occlusion and enhances tumor growth inhibition

    Get PDF
    The angiogenesis inhibitor sunitinib is a tyrosine kinase inhibitor that acts mainly on the VEGF and PDGF pathways. We have previously shown that sunitinib is sequestered in the lysosomes of exposed tumor and endothelial cells. This phenomenon is part of the drug-induced resistance observed in the clinic. Here, we demonstrate that when exposed to light, sequestered sunitinib causes immediate destruction of the lysosomes, resulting in the release of sunitinib and cell death. We hypothesized that this photoactivation of sunitinib could be used as a vaso-occlusive vascular-targeting approach to treating cancer. Spectral properties of sunitinib and its lysosomal accumulation were measured in vitro. The human A2780 ovarian carcinoma transplanted onto the chicken chorioallantoic membrane (CAM) and the Colo-26 colorectal carcinoma model in Balb/c mice were used to test the effects of administrating sunitinib and subsequently exposing tumor tissue to light. Tumors were subsequently resected and subject to immunohistochemical analysis. In A2780 ovarian carcinoma tumors, treatment with sunitinib+light resulted in immediate specific angio-occlusion, leading to a necrotic tumor mass 24 h after treatment. Tumor growth was inhibited by 70% as compared with the control group (**P= 4; P = 0.0002). Histology revealed that photoactivation of sunitinib resulted in a change in tumor vessel architecture. The current results suggest that the spectral properties of sunitinib can be exploited for application against certain cancer indications

    Allogeneic NK cells induce the <i>in vitro</i> activation of monocyte-derived and conventional type-2 dendritic cells and trigger an inflammatory response under cancer-associated conditions

    Get PDF
    Natural killer (NK) cells are innate lymphocytes capable to recognize and kill virus-infected and cancer cells. In the past years, the use of allogeneic NK cells as anti-cancer therapy gained interest due to their ability to induce graft-versus-cancer responses without causing graft-versus-host disease and multiple protocols have been developed to produce high numbers of activated NK cells. While the ability of these cells to mediate tumor kill has been extensively studied, less is known about their capacity to influence the activity of other immune cells that may contribute to a concerted anti-tumor response in the tumor microenvironment (TME). In this study, we analyzed how an allogeneic off-the-shelf cord blood stem cell-derived NK-cell product influenced the activation of dendritic cells (DC). Crosstalk between NK cells and healthy donor monocyte-derived DC (MoDC) resulted in the release of IFNγ and TNF, MoDC activation, and the release of the T-cell-recruiting chemokines CXCL9 and CXCL10. Moreover, in the presence of prostaglandin-E2, NK cell/MoDC crosstalk antagonized the detrimental effect of IL-10 on MoDC maturation leading to higher expression of multiple (co-)stimulatory markers. The NK cells also induced activation of conventional DC2 (cDC2) and CD8 + T cells, and the release of TNF, GM-CSF, and CXCL9/10 in peripheral blood mononuclear cells of patients with metastatic colorectal cancer. The activated phenotype of MoDC/cDC2 and the increased release of pro-inflammatory cytokines and T-cell-recruiting chemokines resulting from NK cell/DC crosstalk should contribute to a more inflamed TME and may thus enhance the efficacy of T-cell-based therapies.</p

    Treatment outcome of patients with recurrent glioblastoma multiforme:A retrospective multicenter analysis

    Get PDF
    Glioblastoma multiforme (GBM) universally recurs with dismal prognosis. We evaluated the efficacy of standard treatment strategies for patients with recurrent GBM (rGBM). From two centers in the Netherlands, 299 patients with rGBM after first-line treatment, diagnosed between 2005 and 2014, were retrospectively evaluated. Four different treatment strategies were defined: systemic treatment (SYST), re-irradiation (RT), re-resection followed by adjuvant treatment (SURG) and best supportive care (BSC). Median OS for all patients was 6.5 months, and median PFS (excluding patients receiving BSC) was 5.5 months. Older age, multifocal lesions and steroid use were significantly associated with a shorter survival. After correction for confounders, patients receiving SYST (34.8%) and SURG (18.7%) had a significantly longer survival than patients receiving BSC (39.5%), 7.3 and 11.0 versus 3.1 months, respectively [HR 0.46 (p &lt;0.001) and 0.36 (p &lt;0.001)]. Median survival for patients receiving RT (7.0%) was 9.2 months, but this was not significantly different from patients receiving BSC (p = 0.068). Patients receiving SURG compared to SYST had a longer PFS (9.0 vs. 4.3 months, respectively; p &lt;0.001), but no difference in OS was observed. After adjustments for confounders, patients with rGBM selected for treatment with SURG or SYST do survive significantly longer than patients who are selected for BSC based on clinical parameters. The value of reoperation versus systemic treatment strategies needs further investigation.</p

    The new cardioprotector Monohydroxyethylrutoside protects against doxorubicin-induced inflammatory effects in vitro

    Get PDF
    The new cardioprotector Monohydroxyethylrutoside protects against doxorubicin-induced inflammatory effects in vitro. Abou El Hassan MA, Verheul HM, Jorna AS, Schalkwijk C, van Bezu J, van der Vijgh WJ, Bast A. Department of Medical Oncology, Free University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands. [email protected] Besides its cardiotoxic effect, doxorubicin also elicits inflammatory effects in vivo. 7-Monohydroxyethylrutoside (monoHER) has recently been used as a protector against doxorubicin-induced cardiotoxicity in vivo. It is not known yet whether monoHER can also protect against doxorubicin-induced inflammatory effects. The aim of the present study was (1) to illustrate the inflammatory effects of doxorubicin in vitro and (2) to evaluate a possibly protective effect of monoHER. In order to demonstrate the inflammatory effects of doxorubicin and the possible protection of monoHER, proliferating human umbilical cord vascular endothelial cells (HUVECs) were incubated with different concentrations of doxorubicin ranging from 12.5 to 600 nM with(out) 200 micro M monoHER. Resting (confluent) HUVECs were incubated with (0.5-25 micro M) doxorubicin with(out) monoHER (0.2-1.2 mM) and the viability of endothelial cells and their propensity to adhere to neutrophils were measured 24 h after treatment. The localisation of adhered neutrophils was determined with immunofluorescence microscopy. To further characterise the mechanism of doxorubicin-induced neutrophil adhesion, the expression of the HUVECs surface adhesion molecules was determined after doxorubicin treatment. Doxorubicin decreased the viability and proliferation capacity of HUVECs in a concentration-dependent manner. The proliferating HUVECs were much more sensitive to doxorubicin (IC(50)=60.0+/-20.8 nM) than resting cells (LC(50)=4.0+/-0.3 micro M). Doxorubicin also increased the adhesion of neutrophils reaching a plateau value at a doxorubicin concentration of > or =0.4 micro M (P=0.0113). The induced neutrophil adhesion was accompanied by overexpression of VCAM and E-selectin but not ICAM. Although monoHER did not reverse the effect of doxorubicin on the proliferation of endothelial cells, it significantly protected resting HUVECs against the cytotoxic effect of doxorubicin (< or =25 micro M, P<0.0015). In addition, monoHER completely protected against the stimulatory effect of doxorubicin on neutrophil adhesion, and inhibited the doxorubin-induced expression of VCAM and E-selectin on the surface of treated HUVECs. This study illustrates that monoHER, which protects against doxorubicin's cardiotoxic effect, can also protect against doxorubicin-induced inflammatory effects. These data prompt further investigation about the possible link between doxorubicin-induced inflammatory effects and its cardiotoxicity in viv

    Molecular analysis of human endometrium: short-term tibolone signaling differs significantly from estrogen and estrogen + progestagen signaling

    Get PDF
    Tibolone, a tissue-selective compound with a combination of estrogenic, progestagenic, and androgenic properties, is used as an alternative for estrogen or estrogen plus progesterone hormone therapy for the treatment of symptoms associated with menopause and osteoporosis. The current study compares the endometrial gene expression profiles after short-term (21 days) treatment with tibolone to the profiles after treatment with estradiol-only (E2) and E2 + medroxyprogesterone acetate (E2 + MPA) in healthy postmenopausal women undergoing hysterectomy for endometrial prolapse. The impact of E2 treatment on endometrial gene expression (799 genes) was much higher than the effect of tibolone (173 genes) or E2 + MPA treatment (174 genes). Furthermore, endometrial gene expression profiles after tibolone treatment show a weak similarity to the profiles after E2 treatment (overlap 72 genes) and even less profile similarity to E2 + MPA treatment (overlap 17 genes). Interestingly, 95 tibolone-specific genes were identified. Translation of profile similarity into biological processes and pathways showed that ER-mediated downstream processes, such as cell cycle and cell proliferation, are not affected by E2 + MPA, slightly by tibolone, but are significantly affected by E2. In conclusion, tibolone treatment results in a tibolone-specific gene expression profile in the human endometrium, which shares only limited resemblance to E2 and even less resemblance to E2 + MPA induced profiles
    • …
    corecore