6 research outputs found

    Application of contrast-enhanced magnetic resonance imaging in the assessment of blood-cerebrospinal fluid barrier integrity

    Get PDF
    VERHEGGEN, I.C.M., W. Freeze, J. de Jong, J. Jansen, A. Postma, M. van Boxtel, F. Verhey and W. Backes. The application of contrast-enhanced MRI in the assessment of blood-cerebrospinal fluid barrier integrity. Choroid plexus epithelial cells form a barrier that enables active, bidirectional exchange between the blood plasma and cerebrospinal fluid (CSF), known as the blood-CSF barrier (BCSFB). Through its involvement in CSF composition, the BCSFB maintains homeostasis in the central nervous system. While the relation between bloodbrain barrier disruption, aging and neurodegeneration is extensively studied using contrast-enhanced MRI, applying this technique to investigate BCSFB disruption in age-related neurodegeneration has received little attention. This review provides an overview of the current status of contrast-enhanced MRI to assess BCSFB permeability. Post-contrast ventricular gadolinium enhancement has been used to indicate BCSFB permeability. Moreover, new techniques highly sensitive to low gadolinium concentrations in the CSF, for instance heavily T2weighted imaging with cerebrospinal fluid suppression, seem promising. Also, attempts are made at using other contrast agents, such as manganese ions or very small superparamagnetic iron oxide particles, that seem to be cleared from the brain at the choroid plexus. Advancing and applying new developments such as these could progress the assessment of BCSFB integrity.Neuro Imaging Researc

    White matter hyperintensities mediate the association between blood-brain barrier leakage and information processing speed

    Get PDF
    Blood-brain barrier (BBB) leakage is considered an important underlying process in both cerebral small vessel disease (cSVD) and Alzheimer's disease (AD). The objective of this study was to examine associations between BBB leakage, cSVD, neurodegeneration, and cognitive performance across the spectrum from normal cognition to dementia. Leakage was measured with dynamic contrast-enhanced magnetic resonance imaging in 80 older participants (normal cognition, n = 32; mild cognitive impairment, n 34; clinical AD-type dementia, n = 14). Associations between leakage and white matter hyperintensity (WMH) volume, hippocampal volume, and cognition (information processing speed and memory performance) were examined with multivariable linear regression and mediation analyses. Leakage within the gray and white matter was positively associated with WMH volume (gray matter, p = 0.03; white matter, p = 0.01). A negative association was found between white matter BBB leakage and information processing speed performance, which was mediated by WMH volume. Leakage was not associated with hippocampal volume. WMH pathology is suggested to form a link between leakage and decline of information processing speed in older individuals with and without cognitive impairment. (C) 2019 Elsevier Inc. All rights reserved

    Rich-Club Connectivity of the Structural Covariance Network Relates to Memory Processes in Mild Cognitive Impairment and Alzheimer's Disease

    No full text
    Background: Though mediotemporal lobe volume changes are well-known features of Alzheimer's disease (AD), grey matter volume changes may be distributed throughout the brain. These distributed changes are not independent due to the underlying network structure and can be described in terms of a structural covariance network (SCN).Objective: To investigate how the cortical brain organization is altered in AD we studied the mutual connectivity of hubs in the SCN, i.e., the rich-club.Methods: To construct the SCNs, cortical thickness was obtained from structural MRI for 97 participants (normal cognition, n = 37; mild cognitive impairment, n = 41; Alzheimer-type dementia, n = 19). Subsequently, rich-club coefficients were calculated from the SCN, and related to memory performance and hippocampal volume using linear regression.Results: Lower rich-club connectivity was related to lower memory performance as well as lower hippocampal volume.Conclusion: Therefore, this study provides novel evidence of reduced connectivity in hub areas in relation to AD-related cognitive impairments and atrophy.Radiolog

    Rich-Club Connectivity of the Structural Covariance Network Relates to Memory Processes in Mild Cognitive Impairment and Alzheimer's Disease

    No full text
    Background: Though mediotemporal lobe volume changes are well-known features of Alzheimer's disease (AD), grey matter volume changes may be distributed throughout the brain. These distributed changes are not independent due to the underlying network structure and can be described in terms of a structural covariance network (SCN).Objective: To investigate how the cortical brain organization is altered in AD we studied the mutual connectivity of hubs in the SCN, i.e., the rich-club.Methods: To construct the SCNs, cortical thickness was obtained from structural MRI for 97 participants (normal cognition, n = 37; mild cognitive impairment, n = 41; Alzheimer-type dementia, n = 19). Subsequently, rich-club coefficients were calculated from the SCN, and related to memory performance and hippocampal volume using linear regression.Results: Lower rich-club connectivity was related to lower memory performance as well as lower hippocampal volume.Conclusion: Therefore, this study provides novel evidence of reduced connectivity in hub areas in relation to AD-related cognitive impairments and atrophy

    Associations of increased interstitial fluid with vascular and neurodegenerative abnormalities in a memory clinic sample

    Get PDF
    The vascular and neurodegenerative processes related to clinical dementia cause cell loss which induces, amongst others, an increase in interstitial fluid (ISF).We assessed microvascular, parenchymal integrity, and a proxy of ISF volume alterations with intravoxel incoherent motion imaging in 21 healthy controls and 53 memory clinic patients - mainly affected by neurodegeneration (mild cognitive impairment, Alzheimer's disease dementia), vascular pathology (vascular cognitive impairment), and presumed to be without significant pathology (subjective cognitive decline).The microstructural components were quantified with spectral analysis using a non-negative least squares method. Linear regression was employed to investigate associations of these components with hippocampal and white matter hyperintensity (WMH) volumes. In the normal appearing white matter, a large f(int )(a proxy of ISF volume) was associated with a large WMH volume and low hippocampal volume. Likewise, a large f(int) value was associated with a lower hippocampal volume in the hippocampi.Large ISF volume (f(int)) was shown to be a prominent factor associated with both WMHs and neurodegenerative abnormalities in memory clinic patients and is argued to play a potential role in impaired glymphatic functioning. (C) 2021 The Author(s). Published by Elsevier Inc.Neuro Imaging Researc
    corecore