24 research outputs found

    The subchalcogenides Ir₂In₈Q (Q = S, Se, Te): Dirac semimetal candidates with re-entrant structural modulation

    Get PDF
    Subchalcogenides are uncommon compounds where the metal atoms are in unusually low formal oxidation states. They bridge the gap between intermetallics and semiconductors, and can have unexpected structures and properties because of the exotic nature of their chemical bonding, as they contain both metal-metal and metal-main group (e.g. halide, chalcogenide) interactions. Finding new members of this class of materials presents synthetic challenges, as attempts to make them often result in phase separation into binary compounds. We overcome this difficulty by utilizing indium as a metal flux to synthesize large (mm scale) single crystals of novel subchalcogenide materials. Herein, we report two new compounds Ir2In8Q (Q = Se, Te) and compare their structural and electrical properties to the previously reported Ir2In8S analogue. Ir2In8Se and Ir2In8Te crystallize in the P42/mnm space group and are isostructural to Ir2In8S but also have commensurately modulated (with q-vectors q = 1/6a* + 1/6b* and q= 1/10a* + 1/10b* for Ir2In8Se and Ir2In8Te, respectively) low temperature phase transitions, where the chalcogenide anions in the channels experience a distortion in the form of In-Q bond alternation along the ab plane. Both compounds display re-entrant structural behavior, where the supercells appear on cooling but revert to the original subcell below 100 K, suggesting competing structural and electronic interactions dictate the overall structure. Notably, these materials are topological semimetal candidates with symmetry-protected Dirac crossings near the Fermi level, and exhibit high electron mobilities (~1500 cm2 V-1 s-1 at 1.8 K) and moderate carrier concentrations (~1020 cm-3) from charge transport measurements. This work highlights metal flux as a powerful synthetic route to high quality single crystals of novel intermetallic subchalcogenides

    A New Three-Dimensional Subsulfide Ir₂In₈S with Dirac Semimetal Behavior

    Get PDF
    Dirac and Weyl semimetals host exotic quasiparticles with unconventional transport properties, such as high magnetoresistance and carrier mobility. Recent years have witnessed a huge number of newly predicted topological semimetals from existing databases; however, experimental verification often lags behind such predictions. Common reasons are synthetic difficulties or the stability of predicted phases. Here, we report the synthesis of the Type-II Dirac semimetal Ir2In8S, an air-stable compound with a new structure type. This material has two Dirac crossings in its electronic structure along the Γ-Z direction of the Brillouin zone. We further show that Ir2In8S has a high electron carrier mobility of ~10,000 cm2/Vs at 1.8 K, and a large, non-saturating transverse magnetoresistance of ~6000% at 3.34 K in a 14 T applied field. Shubnikov de-Haas oscillations reveal several small Fermi pockets and the possibility of a nontrivial Berry phase. With its facile crystal growth, novel structure type, and striking electronic structure, Ir2In8S introduces a new material system to study topological semimetals and enable advances in the field of topological materials

    Emergent quantum confinement at topological insulator surfaces

    Full text link
    Bismuth-chalchogenides are model examples of three-dimensional topological insulators. Their ideal bulk-truncated surface hosts a single spin-helical surface state, which is the simplest possible surface electronic structure allowed by their non-trivial Z2\mathbb{Z}_2 topology. They are therefore widely regarded ideal templates to realize the predicted exotic phenomena and applications of this topological surface state. However, real surfaces of such compounds, even if kept in ultra-high vacuum, rapidly develop a much more complex electronic structure whose origin and properties have proved controversial. Here, we demonstrate that a conceptually simple model, implementing a semiconductor-like band bending in a parameter-free tight-binding supercell calculation, can quantitatively explain the entire measured hierarchy of electronic states. In combination with circular dichroism in angle-resolved photoemission (ARPES) experiments, we further uncover a rich three-dimensional spin texture of this surface electronic system, resulting from the non-trivial topology of the bulk band structure. Moreover, our study reveals how the full surface-bulk connectivity in topological insulators is modified by quantum confinement.Comment: 9 pages, including supplementary information, 4+4 figures. A high resolution version is available at http://www.st-andrews.ac.uk/~pdk6/pub_files/TI_quant_conf_high_res.pd

    Chiral optical response of multifold fermions

    No full text
    Multifold fermions are generalizations of twofold degenerate Weyl fermions with three-, four-, six-, or eightfold degeneracies protected by crystal symmetries, of which only the last type is necessarily nonchiral. Their low-energy degrees of freedom can be described as emergent relativistic particles not present in the standard model of particle physics. We propose a range of experimental probes for multifold fermions in chiral symmetry groups based on the gyrotropic magnetic effect (GME) and the circular photogalvanic effect (CPGE). We find that, in contrast to Weyl fermions, multifold fermions can have zero Berry curvature yet a finite GME, leading to an enhanced response. The CPGE is quantized and independent of frequency provided that the frequency region at which it is probed defines closed optically activated momentum surfaces. We confirm the above properties by calculations in symmetry-restricted tight-binding models with realistic density functional theory parameters. We identify a range of previously unidentified ternary compounds able to exhibit chiral multifold fermions of all types (including a range of materials in the families AsBaPt and Gd3 Cl3 C), and provide specific predictions for the known multifold material RhSi

    Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys

    No full text
    Weyl fermions have recently been observed in several time-reversal-invariant semimetals and photonics materials with broken inversion symmetry. These systems are expected to have exotic transport properties such as the chiral anomaly. However, most discovered Weyl materials possess a substantial number of Weyl nodes close to the Fermi level that give rise to complicated transport properties. Here we predict, for the first time, a new family of Weyl systems defined by broken time-reversal symmetry, namely, Co-based magnetic Heusler materials XCo(2)Z (X = IVB or VB; Z = IVA or IIIA). To search for Weyl fermions in the centrosymmetric magnetic systems, we recall an easy and practical inversion invariant, which has been calculated to be -1, guaranteeing the existence of an odd number of pairs of Weyl fermions. These materials exhibit, when alloyed, only two Weyl nodes at the Fermi level-the minimum number possible in a condensed matter system. The Weyl nodes are protected by the rotational symmetry along the magnetic axis and separated by a large distance (of order 2 pi) in the Brillouin zone. The corresponding Fermi arcs have been calculated as well. This discovery provides a realistic and promising platform for manipulating and studying the magnetic Weyl physics in experiments
    corecore