11 research outputs found

    Drone-Borne Ground-Penetrating Radar for Snow Cover Mapping

    Get PDF
    Ground-penetrating radar (GPR) is one of the most commonly used instruments to map the Snow Water Equivalent (SWE) in mountainous regions. However, some areas may be difficult or dangerous to access; besides, some surveys can be quite time-consuming. We test a new system to fulfill the need to speed up the acquisition process for the analysis of the SWE and to access remote or dangerous areas. A GPR antenna (900 MHz) is mounted on a drone prototype designed to carry heavy instruments, fly safely at high altitudes, and avoid interference of the GPR signal. A survey of two test sites of the Alpine region during winter 2020-2021 is presented, to check the prototype performance for mapping the snow thickness at the catchment scale. We process the data according to a standard flow-chart of radar processing and we pick both the travel times of the air-snow interface and the snow-ground interface to compute the travel time difference and to estimate the snow depth. The calibration of the radar snow depth is performed by comparing the radar travel times with snow depth measurements at preselected stations. The main results show fairly good reliability and performance in terms of data quality, accuracy, and spatial resolution in snow depth monitoring. We tested the device in the condition of low snow density (<200 kg/m(3)) and this limits the detectability of the air-snow interface. This is mainly caused by low values of the electrical permittivity of the dry soft snow, providing a weak reflectivity of the snow surface. To overcome this critical aspect, we use the data of the rangefinder to properly detect the travel time of the snow-air interface. This sensor is already installed in our prototype and in most commercial drones for flight purposes. Based on our experience with the prototype, various improvement strategies and limitations of drone-borne GPR acquisition are discussed. In conclusion, the drone technology is found to be ready to support GPR-based snow depth mapping applications at high altitudes, provided that the operators acquire adequate knowledge of the devices, in order to effectively build, tune, use and maintain a reliable acquisition system

    Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy

    Get PDF
    Because hyper-excitability has been shown to be a shared pathophysiological mechanism, we used the latest and largest genome-wide studies in amyotrophic lateral sclerosis (n = 36,052) and epilepsy (n = 38,349) to determine genetic overlap between these conditions. First, we showed no significant genetic correlation, also when binned on minor allele frequency. Second, we confirmed the absence of polygenic overlap using genomic risk score analysis. Finally, we did not identify pleiotropic variants in meta-analyses of the 2 diseases. Our findings indicate that amyotrophic lateral sclerosis and epilepsy do not share common genetic risk, showing that hyper-excitability in both disorders has distinct origins

    Drone-Borne Ground-Penetrating Radar for Snow Cover Mapping

    No full text
    Ground-penetrating radar (GPR) is one of the most commonly used instruments to map the Snow Water Equivalent (SWE) in mountainous regions. However, some areas may be difficult or dangerous to access; besides, some surveys can be quite time-consuming. We test a new system to fulfill the need to speed up the acquisition process for the analysis of the SWE and to access remote or dangerous areas. A GPR antenna (900 MHz) is mounted on a drone prototype designed to carry heavy instruments, fly safely at high altitudes, and avoid interference of the GPR signal. A survey of two test sites of the Alpine region during winter 2020&ndash;2021 is presented, to check the prototype performance for mapping the snow thickness at the catchment scale. We process the data according to a standard flow-chart of radar processing and we pick both the travel times of the air&ndash;snow interface and the snow&ndash;ground interface to compute the travel time difference and to estimate the snow depth. The calibration of the radar snow depth is performed by comparing the radar travel times with snow depth measurements at preselected stations. The main results show fairly good reliability and performance in terms of data quality, accuracy, and spatial resolution in snow depth monitoring. We tested the device in the condition of low snow density (&lt;200 kg/m3) and this limits the detectability of the air&ndash;snow interface. This is mainly caused by low values of the electrical permittivity of the dry soft snow, providing a weak reflectivity of the snow surface. To overcome this critical aspect, we use the data of the rangefinder to properly detect the travel time of the snow&ndash;air interface. This sensor is already installed in our prototype and in most commercial drones for flight purposes. Based on our experience with the prototype, various improvement strategies and limitations of drone-borne GPR acquisition are discussed. In conclusion, the drone technology is found to be ready to support GPR-based snow depth mapping applications at high altitudes, provided that the operators acquire adequate knowledge of the devices, in order to effectively build, tune, use and maintain a reliable acquisition system

    Early weight loss in amyotrophic lateral sclerosis: outcome relevance and clinical correlates in a population-based cohort

    No full text
    Objectives: To assess the role of body mass index (BMI) and of the rate of weight loss as prognostic factors in amyotrophic lateral sclerosis (ALS) and to explore the clinical correlates of weight loss in the early phases of the disease. Methods: The study cohort included all ALS patients in Piemonte/Valle d'Aosta in the 2007-2011 period. Overall survival and the probability of death/tracheostomy at 18 months (logistic regression model) were calculated. Results: Of the 712 patients, 620 (87.1%) were included in the study. Patients ' survival was related to the mean monthly percentage of weight loss at diagnosis (p<0.0001), but not to pre-morbid BMI or BMI at diagnosis. Spinal onset patients with dysphagia at diagnosis had a median survival similar to bulbar onset patients. About 20% of spinal onset patients without dysphagia at diagnosis had severe weight loss and initial respiratory impairment, and had a median survival time similar to bulbar onset patients. Conclusions: The rate of weight loss from onset to diagnosis was found to be a strong and independent prognostic factor in ALS. Weight loss was mainly due to the reduction of nutritional intake related to dysphagia, but a subgroup of spinal onset patients without dysphagia at diagnosis had a severe weight loss and an outcome similar to bulbar patients. According to our findings, we recommend that in clinical trials patients should be stratified according to the presence of dysphagia at the time of enrolment and not by site of onset of symptoms

    Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy

    Get PDF
    Because hyper-excitability has been shown to be a shared pathophysiological mechanism, we used the latest and largest genome-wide studies in amyotrophic lateral sclerosis (n = 36,052) and epilepsy (n = 38,349) to determine genetic overlap between these conditions. First, we showed no significant genetic correlation, also when binned on minor allele frequency. Second, we confirmed the absence of polygenic overlap using genomic risk score analysis. Finally, we did not identify pleiotropic variants in meta-analyses of the 2 diseases. Our findings indicate that amyotrophic lateral sclerosis and epilepsy do not share common genetic risk, showing that hyper-excitability in both disorders has distinct origins
    corecore