24 research outputs found
Conductance as a Function of the Temperature in the Double Exchange Model
We have used the Kubo formula to calculate the temperature dependence of the
electrical conductance of the double exchange Hamiltonian. We average the
conductance over an statistical ensemble of clusters, which are obtained by
performing Monte Carlo simulations on the classical spin orientation of the
double exchange Hamiltonian. We find that for electron concentrations bigger
than 0.1, the system is metallic at all temperatures. In particular it is not
observed any change in the temperature dependence of the resistivity near the
magnetical critical temperature. The calculated resistivity near is
around ten times smaller than the experimental value. We conclude that the
double exchange model is not able to explain the metal to insulator transition
which experimentally occurs at temperatures near the magnetic critical
temperature.Comment: 6 pages, 5 figures included in the tex
The effects of climate change on the ecology of fishes
Ocean warming and acidification are set to reshuffle life on Earth and alter ecological processes that underpin the biodiversity, health, productivity, and resilience of ecosystems. Fishes contribute significantly to marine, estuarine, and freshwater species diversity and the functioning of marine ecosystems, and are not immune to climate change impacts. Whilst considerable effort has been placed on studying the effects of climate change on fishes, much emphasis has been placed on their (eco)physiology and at the organismal level. Fishes are affected by climate change through impacts at various levels of biological organisation and through a large variety of traits, making it difficult to make generalisations regarding fish responses to climate change. Here, we briefly review the current state of knowledge of climate change effects on fishes across a wide range of subfields of fish ecology and evaluate these effects at various scales of biological organisation (from genes to ecosystems). We argue that a more holistic synthesis of the various interconnected subfields of fish ecology and integration of responses at different levels of biological organisation are needed for a better understanding of how fishes and their populations and communities might respond or adapt to the multi-stressor effects of climate change. We postulate that studies using natural analogues of climate change, meta-analyses, advanced integrative modelling approaches, and lessons learned from past extreme climate events could help reveal some general patterns of climate change impacts on fishes that are valuable for management and conservation approaches. Whilst these might not reveal many of the underlying mechanisms responsible for observed biodiversity and community change, their insights are useful to help create better climate adaptation strategies for their preservation in a rapidly changing ocean
Liquid antiferromagnets in two dimensions
It is shown that, for proper symmetry of the parent lattice,
antiferromagnetic order can survive in two-dimensional liquid crystals and even
isotropic liquids of point-like particles, in contradiction to what common
sense might suggest. We discuss the requirements for antiferromagnetic order in
the absence of translational and/or orientational lattice order. One example is
the honeycomb lattice, which upon melting can form a liquid crystal with
quasi-long-range orientational and antiferromagnetic order but short-range
translational order. The critical properties of such systems are discussed.
Finally, we draw conjectures for the three-dimensional case.Comment: 4 pages RevTeX, 4 figures include
Phase separation and stripe formation in the 2D t-J model: a comparison of numerical results
We make a critical analysis of numerical results for and against phase
separation and stripe formation in the t-J model. We argue that the frustrated
phase separation mechanism for stripe formation requires phase separation at
too high a doping for it to be consistent with existing numerical studies of
the t-J model. We compare variational energies for various methods, and
conclude that the most accurate calculations for large systems appear to be
from the density matrix renormalization group. These calculations imply that
the ground state of the doped t-J model is striped, not phase separated.Comment: This version includes a revised, more careful comparison of numerical
results between DMRG and Green's function Monte Carlo. In particular, for the
original posted version we were accidentally sent obsolete data by Hellberg
and Manousakis; their new results, which are what were used in their Physical
Review Letter, are more accurate because a better trial wavefunction was use
A first-principles approach to electrical transport in atomic-scale nanostructures
We present a first-principles numerical implementation of Landauer formalism
for electrical transport in nanostructures characterized down to the atomic
level. The novelty and interest of our method lies essentially on two facts.
First of all, it makes use of the versatile Gaussian98 code, which is widely
used within the quantum chemistry community. Secondly, it incorporates the
semi-infinite electrodes in a very generic and efficient way by means of Bethe
lattices. We name this method the Gaussian Embedded Cluster Method (GECM). In
order to make contact with other proposed implementations, we illustrate our
technique by calculating the conductance in some well-studied systems such as
metallic (Al and Au) nanocontacts and C-atom chains connected to metallic (Al
and Au) electrodes. In the case of Al nanocontacts the conductance turns out to
be quite dependent on the detailed atomic arrangement. On the contrary, the
conductance in Au nanocontacts presents quite universal features. In the case
of C chains, where the self-consistency guarantees the local charge transfer
and the correct alignment of the molecular and electrode levels, we find that
the conductance oscillates with the number of atoms in the chain regardless of
the type of electrode. However, for short chains and Al electrodes the even-odd
periodicity is reversed at equilibrium bond distances.Comment: 14 pages, two-column format, submitted to PR
Dispersion of Ordered Stripe Phases in the Cuprates
A phase separation model is presented for the stripe phase of the cuprates,
which allows the doping dependence of the photoemission spectra to be
calculated. The idealized limit of a well-ordered array of magnetic and charged
stripes is analyzed, including effects of long-range Coulomb repulsion.
Remarkably, down to the limit of two-cell wide stripes, the dispersion can be
interpreted as essentially a superposition of the two end-phase dispersions,
with superposed minigaps associated with the lattice periodicity. The largest
minigap falls near the Fermi level; it can be enhanced by proximity to a (bulk)
Van Hove singularity. The calculated spectra are dominated by two features --
this charge stripe minigap plus the magnetic stripe Hubbard gap. There is a
strong correlation between these two features and the experimental
photoemission results of a two-peak dispersion in LaSrCuO, and
the peak-dip-hump spectra in BiSrCaCuO. The
differences are suggestive of the role of increasing stripe fluctuations. The
1/8 anomaly is associated with a quantum critical point, here expressed as a
percolation-like crossover. A model is proposed for the limiting minority
magnetic phase as an isolated two-leg ladder.Comment: 24 pages, 26 PS figure
Evolution of the use of corticosteroids for the treatment of hospitalised COVID-19 patients in Spain between March and November 2020: SEMI-COVID national registry
Objectives: Since the results of the RECOVERY trial, WHO recommendations about the use of corticosteroids (CTs) in COVID-19 have changed. The aim of the study is to analyse the evolutive use of CTs in Spain during the pandemic to assess the potential influence of new recommendations. Material and methods: A retrospective, descriptive, and observational study was conducted on adults hospitalised due to COVID-19 in Spain who were included in the SEMI-COVID- 19 Registry from March to November 2020. Results: CTs were used in 6053 (36.21%) of the included patients. The patients were older (mean (SD)) (69.6 (14.6) vs. 66.0 (16.8) years; p < 0.001), with hypertension (57.0% vs. 47.7%; p < 0.001), obesity (26.4% vs. 19.3%; p < 0.0001), and multimorbidity prevalence (20.6% vs. 16.1%; p < 0.001). These patients had higher values (mean (95% CI)) of C-reactive protein (CRP) (86 (32.7-160) vs. 49.3 (16-109) mg/dL; p < 0.001), ferritin (791 (393-1534) vs. 470 (236- 996) µg/dL; p < 0.001), D dimer (750 (430-1400) vs. 617 (345-1180) µg/dL; p < 0.001), and lower Sp02/Fi02 (266 (91.1) vs. 301 (101); p < 0.001). Since June 2020, there was an increment in the use of CTs (March vs. September; p < 0.001). Overall, 20% did not receive steroids, and 40% received less than 200 mg accumulated prednisone equivalent dose (APED). Severe patients are treated with higher doses. The mortality benefit was observed in patients with oxygen saturation </=90%. Conclusions: Patients with greater comorbidity, severity, and inflammatory markers were those treated with CTs. In severe patients, there is a trend towards the use of higher doses. The mortality benefit was observed in patients with oxygen saturation </=90%
Quadre de matriculats i de graduats a les dues especialitats d'Electricitat i Mecànica
Quadre de matriculats i de graduats a les dues especialitats d'Electricitat i Mecànica de l'Institut d'Electricitat i Mecànica Aplicades. Mostra la duresa dels estudis en ambdues escoles on, al llarg de la seva existència, entraren 358 alumnes de les dues especialitats i només 92 obtingueren el títol de director d'indústries