15 research outputs found

    Colorimetric Detection of Caspase 3 Activity and Reactive Oxygen Derivatives: Potential Early Indicators of Thermal Stress in Corals

    Get PDF
    There is an urgent need to develop and implement rapid assessments of coral health to allow effective adaptive management in response to coastal development and global change. There is now increasing evidence that activation of caspase-dependent apoptosis plays a key role during coral bleaching and subsequent mortality. In this study, a "clinical" approach was used to assess coral health by measuring the activity of caspase 3 using a commercial kit. This method was first applied while inducing thermal bleaching in two coral species, Acropora millepora and Pocillopora damicornis. The latter species was then chosen to undergo further studies combining the detection of oxidative stress-related compounds (catalase activity and glutathione concentrations) as well as caspase activity during both stress and recovery phases. Zooxanthellae photosystem II (PSII) efficiency and cell density were measured in parallel to assess symbiont health. Our results demonstrate that the increased caspase 3 activity in the coral host could be detected before observing any significant decrease in the photochemical efficiency of PSII in the algal symbionts and/or their expulsion from the host. This study highlights the potential of host caspase 3 and reactive oxygen species scavenging activities as early indicators of stress in individual coral colonies

    Symbiodinium (Dinophyceae) diversity in reef-invertebrates along an offshore to inshore reef gradient near Lizard Island, Great Barrier Reef

    No full text
    Despite extensive work on the genetic diversity of reef invertebrate-dinoflagellate symbioses on the Great Barrier Reef (GBR; Australia), large information gaps exist from northern and inshore regions. Therefore, a broad survey was done comparing the community of inshore, mid-shelf and outer reefs at the latitude of Lizard Island. Symbiodinium (Freudenthal) diversity was characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Thirty-nine distinct Symbiodinium types were identified from four subgeneric clades (B, C, D, and G). Several Symbiodinium types originally characterized from the Indian Ocean were discovered as well as eight novel types (C1kk, C1LL, C3nn, C26b, C161a, C162, C165, C166). Multivariate analyses on the Symbiodinium species diversity data showed a strong link with host identity, consistent with previous findings. Of the four environmental variables tested, mean austral winter sea surface temperature (SST) influenced Symbiodinium distribution across shelves most significantly. A similar result was found when the analysis was performed on Symbiodinium diversity data of genera with an open symbiont transmission mode separately with chl a and PAR explaining additional variation. This study underscores the importance of SST and water quality related variables as factors driving Symbiodinium distribution on cross-shelf scales. Furthermore, this study expands our knowledge on Symbiodinium species diversity, ecological partitioning (including host-specificity) and geographic ranges across the GBR. The accelerating rate of environmental change experienced by coral reef ecosystems emphasizes the need to comprehend the full complexity of cnidarian symbioses, including the biotic and abiotic factors that shape their current distributions

    Contrasting impacts of light reduction on sediment biogeochemistry in deep- and shallow-water tropical seagrass assemblages (Green Island, Great Barrier Reef)

    No full text
    Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (~2m) and deep-water (~17m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ~10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks. While above-ground biomass was unchanged, higher diffusive O2 uptake (DOU) rates, lower O2 penetration depths, and higher volume-specific O2 consumption (R) rates were found in seagrass-vegetated sediments as compared to adjacent bare sand (control) areas at the shallow-water sites. In contrast, deep-water sediment characteristics did not differ between bare sand and vegetated sites. At the vegetated shallow-water site, shading resulted in significantly lower hydrogen sulphide (H2S) levels in the sediment. No shading effects were found on sediment biogeochemistry at the deep-water site. Overall, our results show that the sediment biogeochemistry of shallow-water (Halodule uninervis, Syringodium isoetifolium, Cymodocea rotundata and C. serrulata) and deep-water (Halophila decipiens) seagrass meadows with different species differ in response to reduced light. The light-driven dynamics of the sediment biogeochemistry at the shallowwater site could suggest the presence of a microbial consortium, which might be stimulated by photosynthetically produced exudates from the seagrass, which becomes limited due to lower seagrass photosynthesis under shaded conditions

    Biofilm growth and near infrared radiation-driven photosynthesis of the chlorophyll <em>d</em>-containing cyanobacterium <em>Acaryochloris marina</em>

    No full text
    The cyanobacterium Acaryochloris marina is the only known phototroph harboring chlorophyll (Chl) d. It is easy to cultivate it in a planktonic growth mode, and A. marina cultures have been subject to detailed biochemical and biophysical characterization. In natural situations, A. marina is mainly found associated with surfaces, but this growth mode has not been studied yet. Here, we show that the A. marina type strain MBIC11017 inoculated into alginate beads forms dense biofilm-like cell clusters, as in natural A. marina biofilms, characterized by strong O2 concentration gradients that change with irradiance. Biofilm growth under both visible radiation (VIS, 400 to 700 nm) and near-infrared radiation (NIR, ∼700 to 730 nm) yielded maximal cell-specific growth rates of 0.38 per day and 0.64 per day, respectively. The population doubling times were 1.09 and 1.82 days for NIR and visible light, respectively. The photosynthesis versus irradiance curves showed saturation at a photon irradiance of Ek (saturating irradiance) >250 μmol photons m−2 s−1 for blue light but no clear saturation at 365 μmol photons m−2 s−1 for NIR. The maximal gross photosynthesis rates in the aggregates were ∼1,272 μmol O2 mg Chl d−1 h−1 (NIR) and ∼1,128 μmol O2 mg Chl d−1 h−1 (VIS). The photosynthetic efficiency (α) values were higher in NIR-irradiated cells [(268 ± 0.29) × 10−6 m2 mg Chl d−1 (mean ± standard deviation)] than under blue light [(231 ± 0.22) × 10−6 m2 mg Chl d−1]. A. marina is well adapted to a biofilm growth mode under both visible and NIR irradiance and under O2 conditions ranging from anoxia to hyperoxia, explaining its presence in natural niches with similar environmental conditions

    Sediment resuspension and deposition on seagrass leaves impedes internal plant aeration and promotes phytotoxic H<inf>2</inf>S intrusion

    Get PDF
    © 2017 Brodersen, Hammer, Schrameyer, Floytrup, Rasheed, Ralph, Kühl and Pedersen. Anthropogenic activities leading to sediment re-suspension can have adverse effects on adjacent seagrass meadows, owing to reduced light availability and the settling of suspended particles onto seagrass leaves potentially impeding gas exchange with the surrounding water. We used microsensors to determine O2 fluxes and diffusive boundary layer (DBL) thickness on leaves of the seagrass Zostera muelleri with and without fine sediment particles, and combined these laboratory measurements with in situ microsensor measurements of tissue O2 and H2 S concentrations. Net photosynthesis rates in leaves with fine sediment particles were down to ∼20% of controls without particles, and the compensation photon irradiance increased from a span of 20–53 to 109–145 µmol photons m−2 s−1. An ∼2.5-fold thicker DBL around leaves with fine sediment particles impeded O2 influx into the leaves during darkness. In situ leaf meristematic O2 concentrations of plants exposed to fine sediment particles were lower than in control plants and exhibited long time periods of complete meristematic anoxia during night-time. Insufficient internal aeration resulted in H2 S intrusion into the leaf meristematic tissues when exposed to sediment resuspension even at relatively high night-time water-column O2 concentrations. Fine sediment particles that settle on seagrass leaves thus negatively affect internal tissue aeration and thereby the plants’ resilience against H2 S intrusion

    Overview of abbreviations and definition of gas exchange parameters from analyses with the photobioreactor (PBR) and from microsensor measurements.

    No full text
    <p>Overview of abbreviations and definition of gas exchange parameters from analyses with the photobioreactor (PBR) and from microsensor measurements.</p

    Conceptual model of light and carbon availability, in the two hard coral species, <i>Pocillopora damicornis</i> and <i>Pavona decussata</i> in moderate light (∼100 µmol photons m<sup>−2</sup> s<sup>−1</sup>).

    No full text
    <p>The schematic diagram of a coral shows the coral tissue containing algal symbionts (green circles), which lies above the calicoblastic layer. Photosynthetic active radiation (PAR) (rainbow arrow) penetrates the coral tissue. In <i>P. decussata</i> a higher density of symbionts reduced light availability compared to <i>P. damicornis</i>. Dissolved inorganic carbon (grey arrows; quantity is relative to arrow thickness) can originate from internal sources such as the calicoblastic layer or from the external environment, where <i>P. decussata</i> draws stronger on the external carbon uptake. Light respiration (R) (strength indicated through size), was greater in <i>P. damicornis</i> than in <i>P. decussata</i>.</p

    Variation in gas exchange measurements with irradiance.

    No full text
    <p>The graphs display gross CO<sub>2</sub> exchange (G<sub>CO2 PBR</sub>; black circles; CO<sub>2</sub> nmol cm<sup>−2</sup> s<sup>−1</sup>) and microsensor derived gross photosynthetic O<sub>2</sub> production (GP<sub>O2 micro</sub>; open circles; O<sub>2</sub> nmol cm<sup>−2</sup> s<sup>−1</sup>) of the hard coral species <i>Pocillopora damicornis</i> (A) and <i>Pavona decussata</i> (B) as a function of nine irradiances (mean ±s.e.m.; G<sub>CO2 PBR</sub>: n = 4 and GP<sub>O2 micro</sub>: n = 2); Tukey honest significant difference test results are indicated for G<sub>CO2 PBR</sub> (lower case letters) and GP<sub>O2 micro</sub> (capitals) (p<0.05).</p
    corecore