597 research outputs found

    Development of an unsteady aerodynamic analysis for finite-deflection subsonic cascades

    Get PDF
    An unsteady potential flow analysis, which accounts for the effects of blade geometry and steady turning, was developed to predict aerodynamic forces and moments associated with free vibration or flutter phenomena in the fan, compressor, or turbine stages of modern jet engines. Based on the assumption of small amplitude blade motions, the unsteady flow is governed by linear equations with variable coefficients which depend on the underlying steady low. These equations were approximated using difference expressions determined from an implicit least squares development and applicable on arbitrary grids. The resulting linear system of algebraic equations is block tridiagonal, which permits an efficient, direct (i.e., noniterative) solution. The solution procedure was extended to treat blades with rounded or blunt edges at incidence relative to the inlet flow

    Application of a linearized unsteady aerodynamic analysis to standard cascade configurations

    Get PDF
    A linearized potential flow analysis, which accounts for the effects of nonuniform steady flow phenomena on the linearized unsteady aerodynamic response to prescribed blade motions, has been applied to five cascade configurations. These include the first, fifth, eighth and ninth standard configurations proposed as a result of the Second International Symposium on Aeroelasticity in Turbomachines and a NASA Lewis flutter cascade. Selected results from this study, including comparisons between analytical predictions and the experimental measurements submitted for three of the foregoing configurations, are described. The correlation between theory and experiment for the first standard configuration (a compressor cascade operating at low Mach number and frequency) is quite good. Moreover, the predictions and measurements for the NASA Lewis cascade of symmetric biconvex airfoils show good qualitative agreement. However, wide discrepancies exist between the theoretical predictions and the experimental measurements for the fifth standard configuration (a subsonic transonic fan tip cascade). These can be partially attributed to conditions being imposed in the experiment which differ from those commonly used in unsteady aerodynamic analyses

    Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines

    Get PDF
    The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster
    corecore