7 research outputs found
Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron(II) Salts Concerted Action
[EN] Soybean peroxidase (SBP) has been employed for the treatment of aqueous solutions containing pentachlorophenol (PCP) in the presence of hydrogen peroxide at pH range 5-7. Reaction carried out with 1mg/L of PCP, 4mg/L of H2O2, and 1.3x10(-9)M of SBP showed a fast initial elimination of PCP (ca. 30% in 20min), but the reaction does not go beyond the removal of 50% of the initial concentration of PCP. Modification in SBP and PCP amounts did not change the reaction profile and higher amounts of H2O2 were detrimental for the reaction. Addition of Fe(II) to the system resulted in an acceleration of the process to reach nearly complete PCP removal at pH 5 or 6; this is more probably due to a synergetic effect of the enzymatic process and Fenton reaction. However, experiments developed in tap water resulted in a lower PCP elimination, but this inconvenience can be partly overcome by leaving the tap water overnight in an open vessel before reaction.We want to acknowledge Davide Mainero from Acea Pinerolese for his collaboration in this research. The authors want to thank the financial support of the European Union (PIRSES-GA-2010-269128, EnvironBOS and Marie Sklodowska-Curie Research and Innovation Staff Exchange projectH2020-MSCA-RISE-2014, Mat4treaT-project number: 645551) and Spanish Ministerio de Educacion y Ciencia (CTQ2015-69832-C4-4-R). Sara Garcia-Ballesteros would like to thank the Spanish Ministerio de Economia y Competitividad for her fellowship (BES-2013-066201).Tolardo, V.; García-Ballesteros, S.; Santos-Juanes Jordá, L.; Vercher Pérez, RF.; Amat Payá, AM.; Arqués Sanz, A.; Laurenti, E. (2019). Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron(II) Salts Concerted Action. Water Air & Soil Pollution. 230(6):1-8. https://doi.org/10.1007/s11270-019-4189-7S182306Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557–572. https://doi.org/10.1016/j.jece.2013.10.011 .Ballschmiter, K. (2003). Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. Chemosphere, 52(2), 313–324. https://doi.org/10.1016/S0045-6535(03)00211-X .Calza, P., Zacchigna, D., & Laurenti, E. (2016). Degradation of orange dyes and carbamazepine by soybean peroxidase immobilized on silica monoliths and titanium dioxide. Environmental Science and Pollution Research, 23(23), 23742–23749. https://doi.org/10.1007/s11356-016-7399-1 .Caza, N., Bewtra, J., Biswas, N., & Taylor, K. (1999). Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Research, 33(13), 3012–3018. https://doi.org/10.1016/S0043-1354(98)00525-9 .Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Science of the Total Environment, 322(1–3), 21–39. https://doi.org/10.1016/j.scitotenv.2003.09.015 .Donadelli, J. A., Carlos, L., Arques, A., & García Einschlag, F. S. (2018). Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways. Applied Catalysis B: Environmental, 231, 51–61. https://doi.org/10.1016/j.apcatb.2018.02.057 .Durán, N., & Esposito, E. (2000). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Applied Catalysis B: Environmental, 28(2), 83–99. https://doi.org/10.1016/S0926-3373(00)00168-5 .Essam, T., Amin, M. A., El Tayeb, O., Mattiasson, B., & Guieysse, B. (2007). Sequential photochemical–biological degradation of chlorophenols. Chemosphere, 66(11), 2201–2209. https://doi.org/10.1016/j.chemosphere.2006.08.036 .Garcia-Peña, E. I., Zarate-Segura, P., Guerra-Blanco, P., Poznyak, T., & Chairez, I. (2012). Enhanced phenol and chlorinated phenols removal by combining ozonation and biodegradation. Water, Air, and Soil Pollution, 223(7), 4047–4064. https://doi.org/10.1007/s11270-012-1172-y .Hoekstra, E. J., De Weerd, H., De Leer, E. W. B., & Brinkman, U. A. T. (1999). Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environmental Science and Technology, 33(15), 2543–2549. https://doi.org/10.1021/es9900104 .Karci, A. (2014). Degradation of chlorophenols and alkylphenol ethoxylates, two representative textile chemicals, in water by advanced oxidation processes: the state of the art on transformation products and toxicity. Chemosphere, 99, 1–18. https://doi.org/10.1016/j.chemosphere.2013.10.034 .Li, Z. (2018). Health risk characterization of maximum legal exposures for persistent organic pollutant (POP) pesticides in residential soil: an analysis. Journal of Environmental Management, 205, 163–173. https://doi.org/10.1016/j.jenvman.2017.09.070 .Marchis, T., Avetta, P., Bianco-Prevot, A., Fabbri, D., Viscardi, G., & Laurenti, E. (2011). Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase. Journal of Inorganic Biochemistry, 105(2), 321–327. https://doi.org/10.1016/j.jinorgbio.2010.11.009 .Marchis, T., Cerrato, G., Magnacca, G., Crocellà, V., & Laurenti, E. (2012). Immobilization of soybean peroxidase on aminopropyl glass beads: structural and kinetic studies. Biochemical Engineering Journal, 67, 28–34. https://doi.org/10.1016/j.bej.2012.05.002 .Muñoz, M., de Pedro, Z. M., Casas, J. A., & Rodriguez, J. J. (2013). Chlorophenols breakdown by a sequential hydrodechlorination-oxidation treatment with a magnetic Pd-Fe/?-Al2O3 catalyst. Water Research, 47(9), 3070–3080. https://doi.org/10.1016/j.watres.2013.03.024 .Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-pour, A., Verma, M., & Surampalli, R. Y. (2018). Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental Pollution. Elsevier. https://doi.org/10.1016/j.envpol.2017.11.060 .Ngo, T. T., & Lenhoff, H. M. (1980). A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Analytical Biochemistry, 105(1), 389–397. https://doi.org/10.1016/0003-2697(80)90475-3 .Olaniran, A. O., & Igbinosa, E. O. (2011). Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere, 83(10), 1297–1306. https://doi.org/10.1016/j.chemosphere.2011.04.009 .Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409(20), 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061 .Passardi, F., Cosio, C., Penel, C., & Dunand, C. (2005, July 22). Peroxidases have more functions than a Swiss army knife. Plant Cell Reports. Springer-Verlag. https://doi.org/10.1007/s00299-005-0972-6 .Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219–256. https://doi.org/10.1016/j.apcatb.2003.09.010 .Qayyum, H., Maroof, H., & Yasha, K. (2009). Remediation and treatment of organopollutants mediated by peroxidases: a review. Critical Reviews in Biotechnology, 29(2), 94–119. https://doi.org/10.1080/07388550802685306 .Samokyszyn, V. M., Freeman, J. P., Rao Maddipati, K., & Lloyd, R. V. (1995). Peroxidase-catalyzed oxidation of pentachlorophenol. Chemical Research in Toxicology, 8, 349–355 http://pubs.acs.org/doi/pdf/10.1021/tx00045a005 . Accessed 23 June 2017Santos-Juanes, L., Amat, A. M., & Arques, A. (2017a). Strategies to drive photo-Fenton process at mild conditions for the removal of xenobiotics from aqueous systems. Current Organic Chemistry, 21(12), 1074–1083. https://doi.org/10.1136/adc.2010.199901 .Santos-Juanes, L., García Einschlag, F. S., Amat, A. M., & Arques, A. (2017b). Combining ZVI reduction with photo-Fenton process for the removal of persistent pollutants. Chemical Engineering Journal, 310, 484–490. https://doi.org/10.1016/j.cej.2016.04.114 .Sarria, V., Parra, S., Adler, N., Péringer, P., Benitez, N., & Pulgarin, C. (2002). Recent developments in the coupling of photoassisted and aerobic biological processes for the treatment of biorecalcitrant compounds. Catalysis Today, 76(2–4), 301–315. https://doi.org/10.1016/S0920-5861(02)00228-6 .Sharma, S., Mukhopadhyay, M., & Murthy, Z. V. P. (2013). Treatment of chlorophenols from wastewaters by advanced oxidation processes. Separation & Purification Reviews, 42(May 2015), 37–41. https://doi.org/10.1080/15422119.2012.669804 .Soler, J., García-Ripoll, A., Hayek, N., Miró, P., Vicente, R., Arques, A., & Amat, A. M. (2009). Effect of inorganic ions on the solar detoxification of water polluted with pesticides. Water Research, 43(18), 4441–4450. https://doi.org/10.1016/j.watres.2009.07.011 .Steevensz, A., Cordova Villegas, L. G., Feng, W., Taylor, K. E., Bewtra, J. K., & Biswas, N. (2014). Soybean peroxidase for industrial wastewater treatment: a mini review. Journal of Environmental Engineering and Science, 9(3), 181–186. https://doi.org/10.1680/jees.13.00013 .Sun, Z., Wei, X., Zhang, H., & Hu, X. (2015). Dechlorination of pentachlorophenol (PCP) in aqueous solution on novel Pd-loaded electrode modified with PPy-SDBS composite film. Environmental Science and Pollution Research, 22(5), 3828–3837. https://doi.org/10.1007/s11356-014-3641-x .Tsai, W.-T. (2013). A review on environmental distributions and risk management of phenols pertaining to the endocrine disrupting chemicals in Taiwan. Toxicological & Environmental Chemistry, 95(5), 723–736. https://doi.org/10.1080/02772248.2013.818150 .Valderrama, B., Ayala, M., & Vazquez-Duhalt, R. (2002, May 1). Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chemistry and Biology. Cell Press. https://doi.org/10.1016/S1074-5521(02)00149-7 .Verbrugge, L. A., Kahn, L., & Morton, J. M. (2018). Pentachlorophenol, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans in surface soil surrounding pentachlorophenol-treated utility poles on the Kenai National Wildlife Refuge, Alaska USA. Environmental Science and Pollution Research, 25(19), 19187–19195. https://doi.org/10.1007/s11356-018-2269-7 .Wright, H., & Nicell, J. A. (1999). Characterization of soybean peroxidase for the treatment of aqueous phenols. Bioresource Technology, 70(1), 69–79. https://doi.org/10.1016/S0960-8524(99)00007-3 .Zhang, G., & Nicell, J. A. (2000). Treatment of aqueous pentachlorophenol by horseradish peroxidase and hydrogen peroxide. Water Research, 34(5), 1629–1637. https://doi.org/10.1016/S0043-1354(99)00326-7 .Zhang, J., Ye, P., Chen, S., & Wang, W. (2007). Removal of pentachlorophenol by immobilized horseradish peroxidase. International Biodeterioration & Biodegradation, 59, 307–314. https://doi.org/10.1016/j.ibiod.2006.09.003 .Zheng, W., Yu, H., Wang, X., & Qu, W. (2012, July 1). Systematic review of pentachlorophenol occurrence in the environment and in humans in China: not a negligible health risk due to the re-emergence of schistosomiasis. Environment International. Pergamon. https://doi.org/10.1016/j.envint.2011.04.014
Treatment and reuse of textile wastewaters by mild solar photo-Fenton in the presence of humic-like substances
The final publication is available at Springer via http://dx.doi.org/10.1007/s11356-016-7889-1In this paper, the possibility of reusing textile effluents for new dyeing baths has been investigated. For this purpose, different trichromies using Direct Red 80, Direct Blue 106, and Direct Yellow 98 on cotton have been used. Effluents have been treated by means of a photo-Fenton process at pH 5. Addition of humic-like substances isolated form urban wastes is necessary in order to prevent iron deactivation because of the formation of non-active iron hydroxides. Laboratory-scale experiments carried out with synthetic effluents show that comparable results were obtained when using as solvent water treated by photo-Fenton with SBO and fresh deionized water. Experiments were scaled up to pilot plant illuminated under sunlight, using in this case a real textile effluent. Decoloration of the effluent could be achieved after moderate irradiation and cotton dyed with this water presented similar characteristics as when deionized water was used.This work was realized with the financial support of a Marie Sklodowska-Curie Research and Innovation Staff Exchange project funded by the European Commission H2020-MSCA-RISE-2014 within the framework of the research project Mat4treaT (project number 645551).
Financial support from Spanish Government (CTQ2015-69832-C4-4-R) is gratefully acknowledged.
The authors acknowledge the financial support of the Generalitat Valenciana, Conselleria d’Educació, Cultura i Esport (GV/AICO/2015/124) and CTQ2015-69832-C4-4-R.García-Negueroles, P.; Bou-Belda, E.; Santos-Juanes Jordá, L.; Amat Payá, AM.; Arques Sanz, A.; Vercher Pérez, RF.; Monllor Pérez, P.... (2017). Treatment and reuse of textile wastewaters by mild solar photo-Fenton in the presence of humic-like substances. Environmental Science and Pollution Research. 24(14):12664-12672. https://doi.org/10.1007/s11356-016-7889-1S12664126722414Ali N, Hameed A et al (2009) Physicochemical characterization and bioremediation perspective of textile effluent, dyes and metals by indigenous bacteria. J Hazard Mater 164(1):322–328Amat AM, Arques A, Miranda MA, Seguí S (2004) Photo-Fenton reaction for the abatement of commercial surfactants in a solar pilot plant. Sol Energy 77:559–566Amorim CC, Leão MMD, Moreira RFPM, Fabris JD, Henriques AB (2013) Performance of blast furnace waste for azo dye degradation through photo-Fenton-like processes. Chem Eng J 224:59–66Anjaneyulu Y, Sreedhara Chary N et al (2005) Decolorization of industrial effluents: available methods and emerging technologies. Environmental Science and Biotechnology 4(4):245–273Arslan-Alaton I, Tureli G, Olmez-Hanci T (2009) Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes: optimization by response surface methodology. J Photochem Photobiol A Chem 202:142–153Azbar N, Yonar T, Kestioglu K (2004) Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 55:35–43Baba Y, Yatagai T, Harada T, Kawase Y (2015) Hydroxyl radical generation in the photo-Fenton process: effects of carboxylic acids on iron redox cycling. Chemical Engineering Journal, Volume 277(1):229–241Bakshi DK, Sharma P (2003) Genotoxicity of textile dyes evaluated with Ames test and rec-assay. J Environ Pathol Toxicol Oncol 22:10Blanco J, Torrades F, Morón M, Brouta-Agnesá M, García-Montaño J (2014) Photo-Fenton and sequencing batch reactor coupled to photo-Fenton processes for textile wastewater reclamation: feasibility of reuse in dyeing processes. Chem Eng J 240:469–475Chen Q, Yang Y, Zhou M, Liu M, Yu S, Gao C (2015) Comparative study on the treatment of raw and biologically treated textile effluents through submerged nanofiltration. Original research article. J Hazard Mater 284(2):121–129dos Santos AB, Cervantes FJ, van Lier J (2007) Review paper on current technologies for decolorisation of textile wastewater: perspectives for anaerobic biotechnology. Bioresour Technol 37:315–377Durán A, Monteagudo JM, Amores E (2008) Solar photo-Fenton degradation of reactive blue 4 in a CPC reactor. Appl Catal B Environ 80(1–2):42–50Ergas S, Therriault B, Reckhow D (2006) Evaluation of water reuse technologies for the textile industry. J Environ Eng 132:315–323García Ballesteros S, Costante R, Vicente R, Mora M, Amat AM, Arques A, Carlos L, García Einschlag FS (2016) Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study. Ptotochem Photobiol Sci in press. doi: 10.1039/c6pp00236fGhaly AE, Ananthashankar R, Alhattab M, Ramakrishnan VV (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 05:1–18Ghoreishian SM, Maleknia L, Mirzapour H, Norouzi M (2013) Antibacterial properties and color fastness of silk fabric dyed with turmeric extract. Fiber Polym 14(2):201–207. doi: 10.1007/s12221-013-0201-9Gomis J, Vercher RF, Amat AM, Mártire DO, González MC, Bianco Prevot A, Montoneri E, Arques A, Carlos L (2013) Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: sensitizing effect and photo-Fenton-like process. Catal Today 209:176–180Gomis J, Carlos L, Bianco Prevot A, Teixeira ACSC, Mora M, Amat AM, Vicente R, Arques A (2015) Bio-based substances from urban waste as auxiliaries for solar photo-Fenton treatment under mild conditions: optimization of operational variables. Catal Today 240:39–45Gupta D, Khare SK, Laha A (2004) Antimicrobial properties of natural dyes against gram negative bacteria. Color Technol 120(4):167–171. doi: 10.1111/j.1478-4408.2004.tb00224.xHan S, Yang Y (2005) Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigments 64(2):157–161. doi: 10.1016/j.dyepig.2004.05.008Huang W, Brigante M, Wu F, Mousty C, Hanna K, Mailhot G (2013) Assessment of the Fe (III)–EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A. Environ Sci Technol 47(4):1952–1959Ince NH, Tezcanh G (1999) Treatability of textile dye-bath effluents by advanced oxidation: preparation for reuse. Water Sci Technol 40(1):183–190ISO 6332:1988. Water quality: determination of iron, spectrometric method using 1,10-phenanthrolineISO 105-X12:2001. Textiles—test for color fastness—part X12: color fastness to rubbing.ISO 105-J01:2009. Textiles. Ensayos de solidez del color. Parte J01: Principios generales para la medición del color de superficies.ISO 105-J03:2009. Textiles. Tests for colour fastness. Part J03: calculation of colour differencesISO 105-C06:2010. Textiles—tests for color fastness—part C06: color fastness to domestic and commercial laundering.ISO 7887:2011. Water quality: examination and determination of colour. Method B.Khandare RV, Govindwar SP (2015) Phytoremediation of textile dyes and effluents: current scenario and future prospects. Review Article Biotechnology Advances 33(8):1697–1714Maezono T, Tokumura M, Sekine M, Kawase Y (2011) Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye orange II. Chemosphere 82(10):1422–1430Malato S, Blanco J, Cáceres J, Fernández-Alba AR, Agüera A, Rodríguez A (2002) Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catalysis Today 76 2002(2–4):209–220Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59Malpass GRP, Miwa DW, Mortari DA, Machado SAS, Motheo AJ (2007) Decolorisation of real textile waste using electrochemical techniques: effect of the chloride concentration. Water Res 41:2969–2977Manenti D, Soares P, Silva TCV, Módenes A, Espinoza-Quiñones F, Bergamasco R, Boaventura RR, Vilar VP (2015) Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater. Environ Sci Pollut Res 22:833–845Mondal M, De S (2016) Treatment of textile plant effluent by hollow fiber nanofiltration membrane and multi-component steady state modeling. Chem Eng J 285:304–318Montoneri, E., Boffa, V., Quagliotto, P., Mendichi, R., Chierotti, M. R., Gobetto, R., and Medana, C. (2008a) "Humic acid-like matter isolated from green urban wastes. Part 1: Structure and surfactant properties". Bio Res 3(1), 123–141.Montoneri, E., Savarino, P., Bottigliengo, S., Musso, G., Boffa, V., Prevot, A. B., Fabri, D. and Pramauro, E. (2008b) "Humic acid-like matter isolated from green urban wastes Part II: Performance in chemical and environmental technologies". Bio Res 3(1), 217–233.Montoneri E, Boffa V, Savarino P, Tambone F, Adani F, Micheletti L, Gianotti C, Chiono R (2009) Use of biosurfactants from urban wastes compost in textile dyeing and soil remediation. Waste Manag 29:383–389Neamtu M, Yediler A, Siminiceanu I, Kettrup A (2003) Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes. J Photochem Photobiol A 161:87–93Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166Pignatello J, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Environ Sci Technol 36:1–84Prato-Garcia D, Buitrón G (2011) Degradation of azo dye mixtures through sequential hybrid systems: evaluation of three advanced oxidation processes for the pre-treatment stage. J Photochem Photobiol A Chem 223:103–110Rodriguez M, Sarria V, Esplugas S, Pulgarin CP-F (2002) Treatment of a biorecalcitrant wastewater generated in textile activities: biodegradability of the photo-treated solution. J Photochem Photobiol A Chem 151:129–135Rosa JM, Fileti AMF, Tambourgi EB, Santana JCC (2015) Dyeing of cotton with reactive dyestuffs: the continuous reuse of textile wastewater effluent treated by ultraviolet/hydrogen peroxide homogeneous photocatalysis. J Clean Prod 90:60–65Sarayu K, Sandhya S (2012) Current technologies for biological treatment of textile wastewater—a review. Appl Biochem Biotech 147(3):645–661Sarkar AK (2004) An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants. BMC Dermatol 4(1):15. doi: 10.1186/1471-5945-4-15Sharma KP, Sharma S et al (2007) A comparative study on characterization of textile wastewaters (untreated and treated) toxicity by chemical and biological tests. Chemosphere 69(1):48–54Standard methods for the examination of water and wastewater (2012) Part 2000: Physical & Aggregate properties, 22end edn. APHA, AWWA and WEFSutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015Wang C, Yediler A, Lienert D, Wang Z, Kettrup A (2002) Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri. Chemosphere 46(2):339–344Yoo J, Ahn B, Jeong-Ju O, Han T, Kim W-K, Kim S, Jung J (2013) Identification of toxicity variations in a stream affected by industrial effluents using Daphnia magna and Ulva pertusa. Original research article. J Hazard Mater 260:1042–104
A new methodology to assess the performance of AOPs in complex samples: Application to the degradation of phenolic compounds by O3 and O3/UV-A Vis
[EN] A methodology combining experimental design methodology, liquid chromatography, excitation emission matrixes (EEM) and bioassays has been applied to study the performance of O3 and O3/UVA-vis in the treatment of a mixture of eight phenolic pollutants. An experimental design methodology based on Doehlert matrixes was employed to determine the effect of pH (between 3 and 12), ozone dosage (02¿1.0¿g/h) and initial concentration of the pollutants (1¿6¿mg/L each). The following conclusions were obtained: a) acidic pH and low O3 dosage resulted in an inefficient process, b) increasing pH and O3 amount produced an enhancement of the reaction, and c) interaction of basic pH and high amounts of ozone decreased the efficiency of the process. The combination of O3/UVA-vis was able to enhance ozonation in those experimental regions were this reagent was less efficient, namely low pH and low ozone dosages. The application of EEM-PARAFAC showed four components, corresponding to the parent pollutants and three different groups of reaction product and its evolution with time. Bioassys indicated important detoxification (from 100% to less than 30% after 1¿min of treatment with initial pollutant concentration of 6¿mg/L, pH¿=¿9 and ozone dosage of 0.8¿g/h) according to the studied methods (D. magna and P. subcapitata). Also estrogenic activity and dioxin-like behavior were significantly decreased.The authors thank the financial support of the European Union(PIRSES-GA-2010-269128, EnvironBOS) and Spanish Ministerio de Educación y Ciencia (CTQ2015-69832-C4-4-R). Sara García-Ballesteros thanks Spanish Ministerio de Economía y Competitividad for providing her fellowship (BES-2013-066201).García-Ballesteros, S.; Mora Carbonell, M.; Vicente Candela, R.; Vercher Pérez, RF.; Sabater Marco, C.; Castillo López, M.; Amat Payá, AM.... (2019). A new methodology to assess the performance of AOPs in complex samples: Application to the degradation of phenolic compounds by O3 and O3/UV-A Vis. Chemosphere. 222:114-123. https://doi.org/10.1016/j.chemosphere.2019.01.015S11412322
Solar photocatalytic detoxification of cyanide effluents from metal finishing industry
[En] Wastewaters from metal fi nishing industry contain, among
other pollutants, high amounts of cyanide and heavy metals,
which results in a high toxicity of the effl uent. Therefore, it
is necessary to detoxify the effl uent before discharging to a
sewage treatment plant which commonly consists in a biological
treatment.
In this study, we analyzed different photocatalytic methods for
cyanide removal: photo-Fenton, Fenton-like with metals such
as manganese, zinc, silver, cobalt, chromium and copper and
photocatalysis with addition of other oxidants such as persulfate.
Initially, we performed a study on synthetic water prepared
with contaminants found in real wastewater. In order to better
simulate real conditions, the possible interferences from ions
usually present in water, such as carbonates, sulfates, fl uorides
or nitrates has been studied. The best treatment (Fenton-Like)
was applied to real wastewaters from a metallurgical industry of
the east of Spain, containg high amounts of copper.
The global analysis of the treatments determined that the
best results were obtained by applying solar photo-Fenton
process and photo-Fenton-like processes with copper. The total
degradation of cyanide and copper precipitation was achieved,
improving the characteristics of the treated effl uent.[ES] Las aguas procedentes de la industria metalúrgica contienen,
entre otros contaminantes, grandes cantidades de cianuro y
metales pesados que les confieren elevadas toxicidades; por ello
se hace necesario detoxificar estos efluentes antes de verterlos
a una Estación de Depuración de Aguas Residuales Urbanas
(EDARU) con tratamientos biológicos.
En este estudio se analizan distintos métodos fotocatalíticos
para la eliminación de cianuro: proceso foto-Fenton, Fentonlike
con diferentes metales frecuentes en aguas reales, como
manganeso, cinc, plata, cobalto, cromo y cobre y fotocatálisis
solar con adición de oxidantes adicionales como persulfato.
Inicialmente, se realiza un estudio sobre aguas preparadas con
contaminantes encontrados en las analíticas de aguas de empresa.
Con objeto de acercarnos más a condiciones reales, se determinan
posibles interferencias causadas por iones presentes en aguas
de forma habitual: carbonatos, sulfatos, fluoruros y nitratos.
El tratamiento que proporciona mejores resultados (proceso
similares al fotoFenton: ¿foto-Like-Fenton¿) se aplica en las
aguas procedentes de una industria metalúrgica de la Comunidad
Valenciana, cuyas aguas contienen cobre en cantidad suficiente
como para influir de manera beneficiosa en el proceso.
El análisis global de los tratamientos aplicados determina que
los mejores resultados se obtienen con la aplicación del proceso
foto-Fenton solar y procesos fotocatalíticos similares con cobre;
se consigue la total degradación del cianuro y la precipitación
final del cobre que favorece su eliminación del efluente mediante
aplicación de un filtro prensa.Silvestre Mira, M.; Vercher Pérez, RF.; Palacios Guillem, S.; Arqués Sanz, A.; Amat Payá, AM.; Añó Montalvá, EJ. (2012). Detoxificación por fotocatálisis solar de efl uentes cianurados provenientes de una industria metalúrgica. Dyna Ingeniería e Industria. 87(6):698-706. doi:10.6036/4676S69870687
Reutilización en nuevas tinturas de aguas industriales reales tratadas mediante proceso foto-Fenton (I)
[EN] Textile wastewaters have a potential impact on the environment, therefore, reuse of these effluents represents an economic and ecological benefit. The appropriate depuration by firms after textile dyeing and finishing operations needs the application of efficient and adequate wastewater treatments. Processes known as Advanced Oxidation Processes (AOP) used in the decolorization and mineralization of wastewaters are extremely effective. AOPs using solar light, as the photo-Fenton process, are especially interesting for the treatment of textile effluents. 99% decrease in absorbance of the industrial textile effluents treated, from exhausting dyeing, has led to its re-use in new laboratory dyeing of several textile materials, by using a range of dyestuffs with diverse chromoferes.[ES] Los efluentes generados por las industrias textiles representan un problema potencial para el medioambiente. Su tratamiento antes de ser liberados en cauces públicos o estaciones depuradoras de aguas residuales (EDAR), implica la aplicación de tratamientos eficientes. Las técnicas conocidas como Procesos Avanzados de Oxidación PAOs para la depuración de aguas son especialmente efectivas, tanto por su elevada reactividad como por su poca selectividad oxidativa. Entre los PAOs, los procesos foto-Fenton resultan muy interesantes para el tratamiento de efluentes textiles, especialmente aquellos que emplean la luz del sol. La disminución del 99% en la absorbancia de los efluentes industriales, de tintura por agotamiento, tratados, ha permitido su reutilización para tintar a escala de laboratorio diferentes materias textiles con diversas familias de colorantes.Sanz, JF.; Monllor Pérez, P.; Vicente Candela, R.; Vercher Pérez, RF. (2012). Reutilización en nuevas tinturas de aguas industriales reales tratadas mediante proceso foto-Fenton (I). Revista de Química e Industria Textil. (207):40-49. http://hdl.handle.net/10251/73661S404920
Evaluación de la competencia transversal ‘Comunicación Efectiva’ mediante presentaciones en vídeo
Resumen de los autoresGrado en Ingeniería Mecánica (Universidad Politécnica de Valencia)La comunicación efectiva es una de las competencias transversales que se trabajan y evalúan en la Universistat Politècnica de Valencia (UPV). En dicha competencia se valora la capacidad de transmitir conocimientos e ideas con claridad y utilizando los recursos necesarios para ello. Se decidió evaluar esta competencia con la realización de presentaciones orales individuales grabadas en formato video para que se permitiera su visionado y evaluación fuera del horario docente. Durante las clases de esta asignatura (Máquinas Térmicas 3º Grado Ingeniería Mecánica) se suele recurrir al visionado de vídeos de pequeña duración para poder entender el funcionamiento de estas máquinas. Por este motivo, este tipo de vídeos no resultan extraños al alumno y en esta actividad se les propuso que hicieran uno explicando las características, funcionamiento, aplicaciones etc., de una máquina térmica comercial. El resultado obtenido fue muy positivo ya que los alumnos fueron receptivos a realizar este tipo de presentaciones y la habilidad y creatividad de algunos alumnos fue enormemente sorprendente y gratificante.ES
Competencias transversales en la asignatura “Tecnología Medioambiental”
Resumen de los autoresGrado en Ingeniería Eléctrica (Universidad Politécnica de Valencia)Durante el desarrollo universitario se considera fundamental no solo trabajar las capacidades intelectuales, también las actitudes relacionadas con el desarrollo personal, que no dependen de un ámbito temático o disciplinario específico y que se manifiestan en la actuación profesional. El Proyecto institucional de implantación de las competencias transversales UPV fue una iniciativa del Vicerrectorado de Estudios, Calidad y Acreditación, que tiene como objetivo principal certificar los niveles de los alumnos en estas competencia. El curso académico 2014/15 fue el de la experiencia piloto y el curso académico 2015/16 fue ya el del comienzo de la implantación definitiva del proyecto. El resultado del listado definitivo de las trece competencias transversales UPV pretende garantizar que se cubren todos los aspectos que reflejan los listados de la agencia americana Accreditation Board for Engineering and Technology, (ABET), más el sello EUR-ACE que concede la agencia European Network for Accreditation of Engineering Education (ENNAEE), más los de los Reales Decretos (RD) españoles.ES