35 research outputs found

    Isomeric periodic mesoporous organosilicas with controllable properties

    Get PDF
    The synthesis procedure for isomeric periodic mesoporous organosilicas with E-configured ethenylene bridges was investigated using the homemade pure E-isomer of 1,2-bis(triethoxysilyl)ethene. The pH, aging temperature and the presence of cosolvents played a key role in obtaining well-ordered mesoporous materials with controllable properties and morphologies. By fine-tuning the reaction mixture acidity, PMOs with high surface areas and pore volumes could be attained. By selecting various alcohols as cosolvents and optimizing the alcohol concentration, PMOs with crystal-like disc shaped, fibrous and spherical particle morphologies were obtained. The synthesis temperature of these ethenylene-bridged PMOs influences the pore size, structure, connectivity and volume

    Cost-benefit analysis of abatement measures for nutrient emission from agriculture

    Get PDF
    In intensive animal husbandry areas surface water N and P concentrations often remain too high. The Water Framework Directive calls for additional nutrient emission abatement measures. Therefore, costs and benefits for possible agricultural measures in Flanders were first analysed in terms of soil balance surplus. Finally, abatement measures for agriculture, households and industry were set off against each other and ranked according to their cost-efficiency by the Environmental Costing Model. Increased dairy cattle efficiency, winter cover crops and increased pig feed efficiency turn out very cost efficient. Other agricultural measures are less cost efficient than for instance collective treatment for households and industry.nitrogen and phosphorus abatement, surface water, cost efficiency, Environmental Economics and Policy, Livestock Production/Industries,

    Management of Bleeding and Hemolysis During Percutaneous Microaxial Flow Pump Support A Practical Approach

    Get PDF
    © 2023 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Percutaneous ventricular assist devices (pVADs) are increasingly being used because of improved experience and availability. The Impella (Abiomed), a percutaneous microaxial, continuous-flow, short-term ventricular assist device, requires meticulous postimplantation management to avoid the 2 most frequent complications, namely, bleeding and hemolysis. A standardized approach to the prevention, detection, and treatment of these complications is mandatory to improve outcomes. The risk for hemolysis is mostly influenced by pump instability, resulting from patient- or device-related factors. Upfront echocardiographic assessment, frequent monitoring, and prompt intervention are essential. The precarious hemostatic balance during pVAD support results from the combination of a procoagulant state, due to critical illness and contact pathway activation, together with a variety of factors aggravating bleeding risk. Preventive strategies and appropriate management, adapted to the impact of the bleeding, are crucial. This review offers a guide to physicians to tackle these device-related complications in this critically ill pVAD-supported patient population.Peer reviewe

    Isomeric periodic mesoporous organosilicas with controllable properties

    No full text
    The synthesis procedure for isomeric periodic mesoporous organosilicas with E-configured ethenylene bridges was investigated using the homemade pure E-isomer of 1,2-bis(triethoxysilyl)ethene. The pH, aging temperature and the presence of cosolvents played a key role in obtaining well-ordered mesoporous materials with controllable properties and morphologies. By fine-tuning the reaction mixture acidity, PMOs with high surface areas and pore volumes could be attained. By selecting various alcohols as cosolvents and optimizing the alcohol concentration, PMOs with crystal-like disc shaped, fibrous and spherical particle morphologies were obtained. The synthesis temperature of these ethenylene-bridged PMOs influences the pore size, structure, connectivity and volume

    Ethenylene-bridged periodic mesoporous organosilicas with ultra-large mesopores

    No full text
    E-configured ethenylene-bridged periodic mesoporous organosilicas with ultra-large mesopores and unprecedented pore volumes have been developed for the first time

    Periodic mesoporous organosilicas consisting of 3d hexagonally ordered interconnected globular pores

    No full text
    A new family of periodic mesoporous organosilicas with 100% E-configured ethenylene-bridges and controllable pore systems is presented. 2D hexagonally ordered hybrid nanocomposites consisting of cylindrical pores are obtained, of which some are filled with solid material. The architectural composition of these hybrid materials can be accurately controlled by fine-tuning the reaction conditions; that is, there is a unique correlation between the reaction mixture acidity and the amount of confined mesopores. This correlation is related to the filling of the pores with solid material whereby the length of the pore channels can be tailored. Hereby the mesophase either shifts toward long-ranged 2D hexagonally ordered open cylinders or toward 3D hexagonally ordered interconnected spheres. The synthesis of these organic−inorganic hybrid composites is straightforward via the direct condensation of E-1,2-bis(triethoxysilyl)ethene, in the presence of pluronic P123. The true nature of these periodic mesoporous organosilicas is disclosed by means of nitrogen gas physisorption, nonlocal density functional theory, SAXS, TEM, and electron-tomography
    corecore