370 research outputs found

    Chandra Observation of the Globular Cluster NGC 6440 and the Nature of Cluster X-ray Luminosity Functions

    Full text link
    As part of our campaign to determine the nature of the various source populations of the low-luminosity globular cluster X-ray sources, we have obtained a Chandra X-ray Observatory ACIS-S3 image of the globular cluster NGC 6440. We detect 24 sources to a limiting luminosity of ~2 times 10^31 erg/s (0.5-2.5keV) inside the cluster's half-mass radius, all of which lie within ~2 core radii of the cluster center. We also find excess emission in and around the core which could be due to unresolved point sources. Based upon X-ray luminosities and colors, we conclude that there are 4-5 likely quiescent low-mass X-ray binaries and that most of the other sources are cataclysmic variables. We compare these results to Chandra results from other globular clusters and find the X-ray luminosity functions differ among the clusters.Comment: 9 pages, 4 figures, accepted by ApJ, minor changes, added table of clusters' physical parameter

    Identification of the LMXB and Faint X-ray Sources in NGC 6652

    Get PDF
    We have detected three new x-ray point sources, in addition to the known low-mass x-ray binary (LMXB) X1832-330, in the globular cluster NGC 6652 with a Chandra 1.6 ksec HRC-I exposure. Star 49 (M_{V}~4.7), suggested by Deutsch et al.(1998) as the optical candidate for the LMXB, is identified (<0.3") not with the LMXB, but with another, newly detected source (B). Using archival HST images, we identify (<0.3") the LMXB (A) and one of the remaining new sources (C) with blue variable optical counterparts at M_{V}~3.7 and 5.3 respectively. The other new source (D) remains unidentified in the crowded cluster core. In the 0.5-2.5 keV range, assuming a 5 keV thermal bremsstrahlung spectrum and N_{H}=5.5*10^{20}, source A has intrinsic luminosity L_{X}~5.3*10^{35} ergs/s. Assuming a 1 keV thermal bremsstrahlung spectrum, B has L_{X}~4.1*10^{33} ergs/s, while C and D have L_{X}~8*10^{32}$ ergs/s. Source B is probably a quiescent LMXB, while source C may be either a luminous CV or quiescent LMXB.Comment: 14 pages, 3 figures, accepted by Astrophysical Journa

    Classical Novae as a Probe of the Cataclysmic Variable Population

    Full text link
    Classical Novae (CNe) are the brightest manifestation of mass transfer onto a white dwarf in a cataclysmic variable (CV). As such, they are probes of the mass transfer rate, Mdot, and WD mass, Mwd, in these interacting binaries. Our calculations of the dependence of the CN ignition mass, Mign, on Mdot and Mwd yields the recurrence times of these explosions. We show that the observed CNe orbital period distribution is consistent with the interrupted magnetic braking evolutionary scenario, where at orbital periods Porb > 3 hr mass transfer is driven by angular momentum loss via a wind from the companion star and at Porb < 3 hr by gravitational radiation. About 50% of CNe occur in binaries accreting at Mdot ~= 10^{-9} Msun/yr with Porb = 3-4 hr, with the remaining 50% split evenly between Porb longer (higher Mdot) and shorter (lower Mdot) than this. This resolution of the relative contribution to the CN rate from different CVs tells us that 3(9)x10^5 CVs with WD mass 1.0(0.6)Msun are needed to produce one CN per year. Using the K-band specific CN rate measured in external galaxies, we find a CV birthrate of 2(4)x10^{-4}/yr per 10^{10}Lsun,K, very similar to the luminosity specific Type Ia supernova rate in elliptical galaxies. Likewise, we predict that there should be 60-180 CVs for every 10^6Lsun,K in an old stellar population, similar to the number of X-ray identified CVs in the globular cluster 47 Tuc, showing no overabundance relative to the field. Using a two-component steady state model of CV evolution we show that the fraction of CVs which are magnetic (22%) implies a birthrate of 8% relative to non-magnetic CVs, similar to the fraction of strongly magnetic field WDs. (abridged)Comment: 6 pages, 2 figures, Accepted to the Astrophysical Journa

    Evidence for precession of the isolated neutron star RX J0720.4-3125

    Full text link
    The XMM-Newton spectra of the isolated neutron star RX J0720.4-3125 obtained over 4.5 years can be described by sinusoidal variations in the inferred blackbody temperature, the size of the emitting area and the depth of the absorption line with a period of 7.1 +/- 0.5 years, which we suggest to be the precession period of the neutron star. Precession of a neutron star with two hot spots of different temperature and size, probably not located exactly in antipodal positions, may account for the variations in the X-ray spectra, changes in the pulsed fraction, shape of the light curve and the phase-lag between soft and hard energy bands observed from RX J0720.4-3125. An independent sinusoidal fit to published and new pulse timing residuals from a coherent analysis covering ~12 years yields a consistent period of 7.7 +/- 0.6 years supporting the precession model.Comment: Accepted for publication in A&A Letters, 5 pages, 5 figure

    Another Faint UV Object Associated with a Globular Cluster X-Ray Source: The Case of M92

    Full text link
    The core of the metal poor Galactic Globular Cluster M92 (NGC 6341) has been observed with WFPC2 on the Hubble Space Telescope through visual, blue and mid-UV filters in a program devoted to study the evolved stellar population in a selected sample of Galactic Globular Clusters. In the UV (m255,m255U)(m_{255}, m_{255}-U) color magnitude diagram we have discovered a faint `UV-dominant' object. This star lies within the error box of a Low Luminosity Globular Cluster X-ray source (LLGCX) recently found in the core of M92. The properties of the UV star discovered in M92 are very similar to those of other UV stars found in the core of some clusters (M13, 47 Tuc, M80, etc)---all of them are brighter in the UV than in the visible and are located in the vicinity of a LLGCX. We suggest that these stars are a new sub-class of cataclysmic variables.Comment: 21 pages, 4 figures. Astrophysical journal in pres

    Optical Observations of the Binary Pulsar System PSR B1718-19: Implications for Tidal Circularization

    Get PDF
    We report on Keck and Hubble Space Telescope optical observations of the eclipsing binary pulsar system PSR B1718-19, in the direction of the globular cluster NGC 6342. These reveal a faint star (mF702W=25.21±0.07m_{\rm F702W}=25.21\pm0.07; Vega system) within the pulsar's 0\farcs5 radius positional error circle. This may be the companion. If it is a main-sequence star in the cluster, it has radius \rcomp\simeq0.3 \rsun, temperature \teff\simeq3600 K, and mass \mcomp\simeq0.3 \msun. In many formation models, however, the pulsar (spun up by accretion or newly formed) and its companion are initially in an eccentric orbit. If so, for tidal circularization to have produced the present-day highly circular orbit, a large stellar radius is required, i.e., the star must be bloated. Using constraints on the radius and temperature from the Roche and Hayashi limits, we infer from our observations that \rcomp\simlt0.44 \rsun and \teff\simgt3300 K. Even for the largest radii, the required efficiency of tidal dissipation is larger than expected for some prescriptions.Comment: 10 pages, 2 figures, aas4pp2.sty. Accepted for publication in Ap

    Crustal Heating and Quiescent Emission from Transiently Accreting Neutron Stars

    Get PDF
    Nuclear reactions occurring deep in the crust of a transiently accreting neutron star efficiently maintain the core at a temperature >5e7 K. When accretion halts, the envelope relaxes to a thermal equilibrium set by the flux from the hot core, as if the neutron star were newly born. For the time-averaged accretion rates typical of low-mass X-ray transients, standard neutrino cooling is unimportant and the core thermally re-radiates the deposited heat. The resulting luminosity has the same magnitude as that observed from several transient neutron stars in quiescence. Confirmation of this mechanism would strongly constrain rapid neutrino cooling mechanisms for neutron stars. Thermal emission had previously been dismissed as a predominant source of quiescent emission since blackbody spectral fits implied an emitting area much smaller than a neutron star's surface. However, as with thermal emission from radio pulsars, fits with realistic emergent spectra will imply a substantially larger emitting area. Other emission mechanisms, such as accretion or a pulsar shock, can also operate in quiescence and generate intensity and spectral variations over short timescales. Indeed, quiescent accretion may produce gravitationally redshifted metal photoionization edges in the quiescent spectra (detectable with AXAF and XMM). We discuss past observations of Aql~X-1 and note that the low luminosity X-ray sources in globular clusters and the Be star/X-ray transients are excellent candidates for future study.Comment: 5 pages, 2 ps figures, uses AASTEX macros. To appear in ApJ letters, 10 September 1998. Revised to conform with journal; minor numerical correction

    A Deep Chandra Survey of the Globular Cluster 47 Tucanae: Catalog of Point Sources

    Full text link
    We have detected 300 X-ray sources within the half-mass radius (2.79') of the globular cluster 47 Tucanae in a deep (281 ks) Chandra exposure. We perform photometry and simple spectral fitting for our detected sources, and construct luminosity functions, X-ray color-magnitude and color-color diagrams. Eighty-seven X-ray sources show variability on timescales from hours to years. Thirty-one of the new X-ray sources are identified with chromospherically active binaries from the catalogs of Albrow et al. The radial distributions of detected sources imply roughly 70 are background sources of some kind. Most source spectra are well-fit by thermal plasma models, except for quiescent low-mass X-ray binaries (qLMXBs, containing accreting neutron stars) and millisecond pulsars (MSPs). We identify three new candidate qLMXBs with relatively low X-ray luminosities. One of the brightest cataclysmic variables (CVs, X10) shows evidence (a 4.7 hour period pulsation and strong soft X-ray emission) for a magnetically dominated accretion flow as in AM Her systems. Most of the bright CVs require intrinsic N_H columns of order 10^{21} cm^-2, suggesting a possible DQ Her nature. A group of X-ray sources associated with bright (sub)giant stars also requires intrinsic absorption. By comparing the X-ray colors, luminosities, variability, and quality of spectral fits of the detected MSPs to those of unidentified sources, we estimate that a total of \~25-30 MSPs exist in 47 Tuc (<60 at 95% confidence), regardless of their radio beaming fraction. We estimate that the total number of neutron stars in 47 Tuc is of order 300, reducing the discrepancy between theoretical neutron star retention rates and observed neutron star populations in globular clusters. (Abstract truncated.)Comment: Accepted by ApJ. 62 pages (18 pp. text, 17 pp. figures, 27 pp. tables), 19 figures (8 color), 8 table
    corecore