538 research outputs found

    The distance and luminosity probability distributions derived from parallax and flux with their measurement errors with application to the millisecond pulsar PSR J0218+4232

    Full text link
    We use a Bayesian approach to derive the distance probability distribution for one object from its parallax with measurement uncertainty for two spatial distribution priors, viz. a homogeneous spherical distribution and a galactocentric distribution - applicable for radio pulsars - observed from Earth. We investigate the dependence on measurement uncertainty, and show that a parallax measurement can underestimate or overestimate the actual distance, depending on the spatial distribution prior. We derive the probability distributions for distance and luminosity combined, and for each separately, when a flux with measurement error for the object is also available, and demonstrate the necessity of and dependence on the luminosity function prior. We apply this to estimate the distance and the radio and gamma-ray luminosities of PSR J0218+4232. The use of realistic priors improves the quality of the estimates for distance and luminosity, compared to those based on measurement only. Use of a wrong prior, for example a homogeneous spatial distribution without upper bound, may lead to very wrong results.Comment: 10 pages, 9 figures, accepted 27-04-2016 to Astronomy and Astrophysic

    Linear Two-Dimensional MHD of Accretion Disks: Crystalline structure and Nernst coefficient

    Full text link
    We analyse the two-dimensional MHD configurations characterising the steady state of the accretion disk on a highly magnetised neutron star. The model we describe has a local character and represents the extension of the crystalline structure outlined in Coppi (2005), dealing with a local model too, when a specific accretion rate is taken into account. We limit our attention to the linearised MHD formulation of the electromagnetic back-reaction characterising the equilibrium, by fixing the structure of the radial, vertical and azimuthal profiles. Since we deal with toroidal currents only, the consistency of the model is ensured by the presence of a small collisional effect, phenomenologically described by a non-zero constant Nernst coefficient (thermal power of the plasma). Such an effect provides a proper balance of the electron force equation via non zero temperature gradients, related directly to the radial and vertical velocity components. We show that the obtained profile has the typical oscillating feature of the crystalline structure, reconciled with the presence of viscosity, associated to the differential rotation of the disk, and with a net accretion rate. In fact, we provide a direct relation between the electromagnetic reaction of the disk and the (no longer zero) increasing of its mass per unit time. The radial accretion component of the velocity results to be few orders of magnitude below the equatorial sound velocity. Its oscillating-like character does not allow a real matter in-fall to the central object (an effect to be searched into non-linear MHD corrections), but it accounts for the out-coming of steady fluxes, favourable to the ring-like morphology of the disk.Comment: 15 pages, 1 figure, accepted for publication on Modern Physics Letters

    Research Report 2007 | 2008

    No full text

    Identification of the LMXB and Faint X-ray Sources in NGC 6652

    Get PDF
    We have detected three new x-ray point sources, in addition to the known low-mass x-ray binary (LMXB) X1832-330, in the globular cluster NGC 6652 with a Chandra 1.6 ksec HRC-I exposure. Star 49 (M_{V}~4.7), suggested by Deutsch et al.(1998) as the optical candidate for the LMXB, is identified (<0.3") not with the LMXB, but with another, newly detected source (B). Using archival HST images, we identify (<0.3") the LMXB (A) and one of the remaining new sources (C) with blue variable optical counterparts at M_{V}~3.7 and 5.3 respectively. The other new source (D) remains unidentified in the crowded cluster core. In the 0.5-2.5 keV range, assuming a 5 keV thermal bremsstrahlung spectrum and N_{H}=5.5*10^{20}, source A has intrinsic luminosity L_{X}~5.3*10^{35} ergs/s. Assuming a 1 keV thermal bremsstrahlung spectrum, B has L_{X}~4.1*10^{33} ergs/s, while C and D have L_{X}~8*10^{32}$ ergs/s. Source B is probably a quiescent LMXB, while source C may be either a luminous CV or quiescent LMXB.Comment: 14 pages, 3 figures, accepted by Astrophysical Journa

    New BeppoSAX-WFC results on superbursts

    Full text link
    Presently seven superbursters have been identified representing 10% of the total Galactic X-ray burster population. Four superbursters were discovered with the Wide Field Cameras (WFCs) on BeppoSAX and three with the All-Sky Monitor and Proportional Counter Array on RXTE. We discuss the properties of superbursters as derived from WFC observations. There are two interesting conclusions. First, the average recurrence time of superbursts among X-ray bursters that are more luminous than 10% of the Eddington limit is 1.5 yr per object. Second, superbursters systematically have higher alpha values and shorter ordinary bursts than most bursters that have not exhibited superbursts, indicating a higher level of stable thermonuclear helium burning. Theory predicts hitherto undetected superbursts from the most luminous neutron stars. We investigate the prospects for finding these in GX~17+2.Comment: Submitted in January 2004 for the Proceedings of the meeting 'X-Ray Timing 2003: Rossi and Beyond', eds. P. Kaaret, F. K. Lamb, & J. H. Swank (Melville, NY: American Institute of Physics

    Kilohertz QPO Frequency and Flux Decrease in AQL X-1 and Effect of Soft X-ray Spectral Components

    Full text link
    We report on an RXTE/PCA observation of Aql X-1 during its outburst in March 1997 in which, immediately following a Type-I burst, the broad-band 2-10 keV flux decreased by about 10% and the kilohertz QPO frequency decreased from 813+-3 Hz to 776+-4 Hz. This change in kHz QPO frequency is much larger than expected from a simple extrapolation of a frequency-flux correlation established using data before the burst. Meanwhile a very low frequency noise (VLFN) component in the broad-band FFT power spectra with a fractional root-mean-square (rms) amplitude of 1.2% before the burst ceased to exist after the burst. All these changes were accompanied by a change in the energy spectral shape. If we characterize the energy spectra with a model composed of two blackbody (BB) components and a power law component, almost all the decrease in flux was in the two BB components. We attribute the two BB components to the contributions from a region very near the neutron star or even the neutron star itself and from the accretion disk, respectively.Comment: 12 pages with 4 figures, accepted for publication in ApJ Letters, typos corrected and references update

    Crustal Heating and Quiescent Emission from Transiently Accreting Neutron Stars

    Get PDF
    Nuclear reactions occurring deep in the crust of a transiently accreting neutron star efficiently maintain the core at a temperature >5e7 K. When accretion halts, the envelope relaxes to a thermal equilibrium set by the flux from the hot core, as if the neutron star were newly born. For the time-averaged accretion rates typical of low-mass X-ray transients, standard neutrino cooling is unimportant and the core thermally re-radiates the deposited heat. The resulting luminosity has the same magnitude as that observed from several transient neutron stars in quiescence. Confirmation of this mechanism would strongly constrain rapid neutrino cooling mechanisms for neutron stars. Thermal emission had previously been dismissed as a predominant source of quiescent emission since blackbody spectral fits implied an emitting area much smaller than a neutron star's surface. However, as with thermal emission from radio pulsars, fits with realistic emergent spectra will imply a substantially larger emitting area. Other emission mechanisms, such as accretion or a pulsar shock, can also operate in quiescence and generate intensity and spectral variations over short timescales. Indeed, quiescent accretion may produce gravitationally redshifted metal photoionization edges in the quiescent spectra (detectable with AXAF and XMM). We discuss past observations of Aql~X-1 and note that the low luminosity X-ray sources in globular clusters and the Be star/X-ray transients are excellent candidates for future study.Comment: 5 pages, 2 ps figures, uses AASTEX macros. To appear in ApJ letters, 10 September 1998. Revised to conform with journal; minor numerical correction

    Optical Observations of the Binary Pulsar System PSR B1718-19: Implications for Tidal Circularization

    Get PDF
    We report on Keck and Hubble Space Telescope optical observations of the eclipsing binary pulsar system PSR B1718-19, in the direction of the globular cluster NGC 6342. These reveal a faint star (mF702W=25.21±0.07m_{\rm F702W}=25.21\pm0.07; Vega system) within the pulsar's 0\farcs5 radius positional error circle. This may be the companion. If it is a main-sequence star in the cluster, it has radius \rcomp\simeq0.3 \rsun, temperature \teff\simeq3600 K, and mass \mcomp\simeq0.3 \msun. In many formation models, however, the pulsar (spun up by accretion or newly formed) and its companion are initially in an eccentric orbit. If so, for tidal circularization to have produced the present-day highly circular orbit, a large stellar radius is required, i.e., the star must be bloated. Using constraints on the radius and temperature from the Roche and Hayashi limits, we infer from our observations that \rcomp\simlt0.44 \rsun and \teff\simgt3300 K. Even for the largest radii, the required efficiency of tidal dissipation is larger than expected for some prescriptions.Comment: 10 pages, 2 figures, aas4pp2.sty. Accepted for publication in Ap
    • …
    corecore