89 research outputs found

    Effects of bovine spermatozoa preparation on embryonic development in vitro

    Get PDF
    The aim of our research was to examine the ability of density gradient preparation BoviPure(® )and swim up method on bull sperm separation and in vitro embryo production (IVP) systems. Frozen/thawed semen from six Simmental bulls was pooled and treated using both methods. The sperm motility, concentration, membrane activity, membrane integrity and acrosomal status were evaluated and compared before and after sperm processing using BoviPure(® )and swim up methods. We also evaluated and compared cleavage rates, embryo yield and quality between the methods. There were significant differences (P < 0.05) between the sperm characteristics before and after BoviPure(®), but not after swim up method. However, there were significant differences for sperm results among those two mentioned methods. A total of 641 oocytes were matured and fertilized in vitro and cultured in SOFaaBSA. The percentage of cleavage (Day 2) and the percentage of hatched embryos (Day 9) were similar for both methods. However, embryo production rate (Day 7) was significantly higher using BoviPure(® )method (P < 0.05). Also, total cell number and embryo differential staining (inner cell mass and trophectoderm cells) of Day 7 morulas and blastocysts showed that BoviPure(® )treated sperm displayed higher quality embryos compared to swim up method (P < 0.05). Our results indicate that BoviPure(® )method has an enhanced capacity in sperm selection for in vitro embryo production when compared with swim up method. So, we concluded that BoviPure(® )could be considered as a better alternative to swim up method for separating bull spermatozoa from frozen/thawed semen for IVP of bovine embryos

    Ocular complications of type 2 membranoproliferative glomerulonephritis

    No full text

    Zeolite-encapsulated copper (II) amino acid complexes: synthesis, spectroscopy, and catalysis

    No full text
    The spectroscopic properties and catalytic behavior of Cu(AA)(n)(m+) complexes (AA = amino acid (glycine, lysine, histidine, alanine, serine, proline, tyrosine, phenylalanine, glutamine, glutamic acid, cysteine, tryptophan, leucine, and arginine)) in faujasite-type zeolites have been investigated. Successful immobilization was achieved by a simple cation exchange procedure with aqueous solutions of preformed Cu(AA)(n)(m+) complexes. The best ion exchange results were obtained with lysine, arginine, proline (at pH = 10), and histidine (at pH =7.3) as ligands and rvirh a AA:Cu2+ ratio of 5. The internal surface and pore volume are drastically reduced by the uptake of the Cu(AA)(n)(m+) complexes, and no precipitation of Cu(AA)(n)(m+) crystals was observed by scanning electron microscopy. Both observations suggest the location of the complexes in the supercages of the faujasite-type zeolites. The composition of the first coordination sphere around Cu2+ can be designed from NNNN to NOOO by varying the type of amino acid. A free coordination site is available for catalysis, and the oxidation of alcohols, alkanes, and alkenes with peroxides was observed at low temperatures
    • …
    corecore