9 research outputs found

    A Review and Bibliometric Analysis on Applications of Microbial Degradation of Hydrocarbon Contaminants in Arctic Marine Environment at Metagenomic and Enzymatic Levels

    No full text
    The globe is presently reliant on natural resources, fossil fuels, and crude oil to support the world’s energy requirements. Human exploration for oil resources is always associated with irreversible effects. Primary sources of hydrocarbon pollution are instigated through oil exploration, extraction, and transportation in the Arctic region. To address the state of pollution, it is necessary to understand the mechanisms and processes of the bioremediation of hydrocarbons. The application of various microbial communities originated from the Arctic can provide a better interpretation on the mechanisms of specific microbes in the biodegradation process. The composition of oil and consequences of hydrocarbon pollutants to the various marine environments are also discussed in this paper. An overview of emerging trends on literature or research publications published in the last decade was compiled via bibliometric analysis in relation to the topic of interest, which is the microbial community present in the Arctic and Antarctic marine environments. This review also presents the hydrocarbon-degrading microbial community present in the Arctic, biodegradation metabolic pathways (enzymatic level), and capacity of microbial degradation from the perspective of metagenomics. The limitations are stated and recommendations are proposed for future research prospects on biodegradation of oil contaminants by microbial community at the low temperature regions of the Arctic

    Coco Peat as Agricultural Waste Sorbent for Sustainable Diesel-Filter System

    No full text
    Oil spill incidents are hazardous and have prolonged damage to the marine environment. Management and spill clean-up procedures are practical and rapid, with several shortcomings. Coco peat (CP) and coco fibre (CF) are refined from coconut waste, and their abundance makes them desirable for diesel spillage treatment. Using a filter-based system, the selectivity of coco peat sorbent was tested using CP, CF and peat-fibre mix (CPM). CP exhibited maximal diesel sorption capacity with minimal seawater uptake, thus being selected for further optimisation analysis. The heat treatment considerably improved the sorption capacity and efficiency of diesel absorbed by CP, as supported by FTIR and VPSEM–EDX analysis. Conventional one-factor-at-a-time (OFAT) examined the performance of diesel sorption by CP under varying parameters, namely temperature, time of heating, packing density and diesel concentration. The significant factors were statistically evaluated using response surface methodology (RSM) via Plackett–Burman design (PB) and central composite design (CCD). Three significant (p < 0.05) factors (time, packing density and diesel concentration) were identified by PB and further analysed for interactions among the parameters. CCD predicted efficiency of diesel absorbed at 59.92% (71.90 mL) (initial diesel concentration of 30% v/v) and the experimental model validated the design with 59.17% (71.00 mL) diesel sorbed at the optimised conditions of 14.1 min of heating (200 °C) with packing density of 0.08 g/cm3 and 30% (v/v) of diesel concentration. The performance of CP in RSM (59.17%) was better than that in OFAT (58.33%). The discoveries imply that natural sorbent materials such as CP in oil spill clean-up operations can be advantageous and environmentally feasible. This study also demonstrated the diesel-filter system as a pilot study for the prospective up-scale application of oil spills

    Remediation of Pesticides by Microalgae as Feasible Approach in Agriculture: Bibliometric Strategies

    No full text
    Pesticide treatment dramatically reduces crop loss and enhances agricultural productivity, promoting global food security and economic growth. However, owing to high accrual and persistent tendency, pesticides could create significant ecological consequences when used often. Lately, the perspective has transitioned to implementing biological material, environmentally sustainable, and economical strategies via bioremediation approaches to eradicate pesticides contaminations. Microalgae were regarded as a prominent option for the detoxification of such hazardous contaminants. Sustainable application and remediation strategies of pesticides pollutants in the agriculture system by microalgae from the past studies, and recent advancements were integrated into this review. Bibliometric strategies to enhance the research advancements in pesticide bioremediation by microalgae between 2010 and 2020 were implemented through critical comparative analysis of documents from Scopus and PubMed databases. As a result, this study identified a growing annual research trend from 1994 to 2020 (nScopus > nPubMed). Global production of pesticide remediation by microalgae demonstrated significant contributions from India (23.8%) and China (16.7%). The author’s keyword clustering was visualized using bibliometric software (VOSviewer), which revealed the strongest network formed by “microalgae”, “bioremediation”, “biodegradation”, “cyanobacteria”, “wastewater”, and “pesticide” as significant to the research topic. Hence, this bibliometric review will facilitate the future roadmap for many scholars and authors who were drawing attention to the burgeoning research on bioremediation of pesticides to counteract environmental impacts while maintaining food sustainability

    A review and bibliometric analysis on applications of microbial degradation of hydrocarbon contaminants in arctic marine environment at metagenomic and enzymatic levels

    No full text
    The globe is presently reliant on natural resources, fossil fuels, and crude oil to support the world’s energy requirements. Human exploration for oil resources is always associated with irreversible effects. Primary sources of hydrocarbon pollution are instigated through oil exploration, extraction, and transportation in the Arctic region. To address the state of pollution, it is necessary to understand the mechanisms and processes of the bioremediation of hydrocarbons. The application of various microbial communities originated from the Arctic can provide a better interpretation on the mechanisms of specific microbes in the biodegradation process. The composition of oil and consequences of hydrocarbon pollutants to the various marine environments are also discussed in this paper. An overview of emerging trends on literature or research publications published in the last decade was compiled via bibliometric analysis in relation to the topic of interest, which is the microbial community present in the Arctic and Antarctic marine environments. This review also presents the hydrocarbon-degrading microbial community present in the Arctic, biodegradation metabolic pathways (enzymatic level), and capacity of microbial degradation from the perspective of metagenomics. The limitations are stated and recommendations are proposed for future research prospects on biodegradation of oil contaminants by microbial community at the low temperature regions of the Arctic

    Optimisation of Antarctic filamentous alga growth in the presence of molybdenum

    No full text
    Elevated concentrations of heavy metals have been identified in Antarctica due to growing anthropogenic activities in recent years. Molybdenum (Mo) is a trace element that has not been extensively studied in terms of its toxicity towards the environment, especially in extremely cold weather. The algae communities in the Antarctic were less focused and explored, unlike indigenous bacteria consortia in their response to heavy metals. The study aims to optimise the physicochemical conditions for optimal growth of an Antarctic algal, Klebsormidium sp. in the presence of Mo via conventional one‒ factor‒at‒a‒time (OFAT) and growth kinetics analysis. Algal cultures with aeration showed a higher growth rate (µ = 0.2352 d-1 ) than those without aeration (µ = 0.1976 d-1 ). Based on the optimised parameter, the overall biomass yields with and without aeration systems correspond to each other (P > 0.05). It was discovered that the Klebsormidium sp. showed maximal growth in terms of biomass at 20 g/L of sucrose, 2 g/L of ammonium nitrate, 4 g/L NaCl concentration and pH 7.5. The overall optimised conditions were further analysed using the Exponential growth model, which demonstrated no significant difference (P > 0.05) in the algae growth rate with aeration (0.020 ± 0.0018 h-1 ) and without aeration (0.020 ± 0.0015 h-1 ). The Antarctic filamentous algae exhibited the ability to grow in heavy metal, Mo at optimal growth conditions, but the aeration systems did not affect the algae growth significantly. Therefore, this study could help in understanding the capability of algae to grow in the presence of heavy metal through various manipulations of growth parameters and act as a preliminary study for bioremediation of Mo in Antarctic polluted sites

    Synthesis, characterization and biomedical application of silver nanoparticles

    No full text
    Silver nanoparticles (AgNPs) have been employed in various fields of biotechnology due to their proven properties as an antibacterial, antiviral and antifungal agent. AgNPs are generally synthesized through chemical, physical and biological approaches involving a myriad of methods. As each approach confers unique advantages and challenges, a trends analysis of literature for the AgNPs synthesis using different types of synthesis were also reviewed through a bibliometric approach. A sum of 10,278 publications were analyzed on the annual numbers of publication relating to AgNPs and biological, chemical or physical synthesis from 2010 to 2020 using Microsoft Excel applied to the Scopus publication database. Furthermore, another bibliometric clustering and mapping software were used to study the occurrences of author keywords on the biomedical applications of biosynthesized AgNPs and a total collection of 224 documents were found, sourced from articles, reviews, book chapters, conference papers and reviews. AgNPs provides an excellent, dependable, and effective solution for seven major concerns: as antibacterial, antiviral, anticancer, bone healing, bone cement, dental applications and wound healing. In recent years, AgNPs have been employed in biomedical sector due to their antibacterial, antiviral and anticancer properties. This review discussed on the types of synthesis, how AgNPs are characterized and their applications in biomedical field

    Application of Cogon Grass (Imperata cylindrica) as Biosorbent in Diesel-Filter System for Oil Spill Removal

    No full text
    Imperata cylindrica, often known as cogon grass, is a low-cost and useful sorbent for absorbing oil and optimising processes. The effects of temperature, time, packing density and oil concentration on oil absorption efficiency were investigated and optimised utilising one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. Temperature and oil concentration are two important variables in the oil absorption process. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis were used to characterise cogon grass. After treatment and oil absorption, the FTIR method indicated new formation and deformation of functional groups, while SEM revealed changes in the surface and texture of cogon grass, including a roughened and jagged surface. Validation of the RSM model yielded 93.54% efficiency with 22.45 mL oil absorbed at 128 °C temperature and 36 (v/v)% oil concentration while keeping packing density and time constant at 30 min and 0.20 g/cm3, respectively. This study may provide an insight into the usefulness of a statistical approach to maximise the oil absorption of cogon grass as an oil sorbent

    Application of Cogon Grass (Imperata cylindrica) as biosorbent in diesel-filter system for oil spill removal

    No full text
    Imperata cylindrica, often known as cogon grass, is a low-cost and useful sorbent for absorbing oil and optimising processes. The effects of temperature, time, packing density and oil concentration on oil absorption efficiency were investigated and optimised utilising one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. Temperature and oil concentration are two important variables in the oil absorption process. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis were used to characterise cogon grass. After treatment and oil absorption, the FTIR method indicated new formation and deformation of functional groups, while SEM revealed changes in the surface and texture of cogon grass, including a roughened and jagged surface. Validation of the RSM model yielded 93.54% efficiency with 22.45 mL oil absorbed at 128 °C temperature and 36 (v/v)% oil concentration while keeping packing density and time constant at 30 min and 0.20 g/cm3, respectively. This study may provide an insight into the usefulness of a statistical approach to maximise the oil absorption of cogon grass as an oil sorbent

    Coco peat as agricultural waste sorbent for sustainable diesel-filter system

    No full text
    Oil spill incidents are hazardous and have prolonged damage to the marine environment. Management and spill clean-up procedures are practical and rapid, with several shortcomings. Coco peat (CP) and coco fibre (CF) are refined from coconut waste, and their abundance makes them desirable for diesel spillage treatment. Using a filter-based system, the selectivity of coco peat sorbent was tested using CP, CF and peat-fibre mix (CPM). CP exhibited maximal diesel sorption capacity with minimal seawater uptake, thus being selected for further optimisation analysis. The heat treatment considerably improved the sorption capacity and efficiency of diesel absorbed by CP, as supported by FTIR and VPSEM–EDX analysis. Conventional one-factor-at-a-time (OFAT) examined the performance of diesel sorption by CP under varying parameters, namely temperature, time of heating, packing density and diesel concentration. The significant factors were statistically evaluated using response surface methodology (RSM) via Plackett–Burman design (PB) and central composite design (CCD). Three significant (p < 0.05) factors (time, packing density and diesel concentration) were identified by PB and further analysed for interactions among the parameters. CCD predicted efficiency of diesel absorbed at 59.92% (71.90 mL) (initial diesel concentration of 30% v/v) and the experimental model validated the design with 59.17% (71.00 mL) diesel sorbed at the optimised conditions of 14.1 min of heating (200 °C) with packing density of 0.08 g/cm3 and 30% (v/v) of diesel concentration. The performance of CP in RSM (59.17%) was better than that in OFAT (58.33%). The discoveries imply that natural sorbent materials such as CP in oil spill clean-up operations can be advantageous and environmentally feasible. This study also demonstrated the diesel-filter system as a pilot study for the prospective up-scale application of oil spills
    corecore