39 research outputs found

    Nutrition and Cancer

    Get PDF
    The development and treatment of cancer presents a complex interaction between tumor and host. Provision of nutrients not only enables the maintenance of nutritional status, but also provides substrates and signals for immunity, tumor metabolism and protection of the host from treatment toxicities. Fat is one dietary element that has been explored for its role in cancer development. While the bulk of these studies have been observational or experimental, the evidence assembled suggests that dietary lipids behave uniquely to prevent or promote cancers. An additional aspect of cancer development is the role of adipose tissue as a source of, and a responder to, inflammatory signals that may be involved in tumor development. This Special Issue of Nutrients focuses on fat and cancer. The contributors to this Special Issue are well-recognized leaders in the field of cancer and have unique areas of focus including metabolism, immunology, biochemistry, epidemiology and nutrition. Each contribution highlights the latest research in these areas and what is known about fat and cancer with topics ranging from diet and cancer prevention, mechanisms of n-3 fatty acids on tumor development and the role of adipose tissue in cancer development and progression

    Potential Biomarkers of Fat Loss as a Feature of Cancer Cachexia

    Get PDF

    Ganglioside Alters Phospholipase Trafficking, Inhibits NF-ÎșB Assembly, and Protects Tight Junction Integrity

    Get PDF
    Background and Aims: Dietary gangliosides are present in human milk and consumed in low amounts from organ meats. Clinical and animal studies indicate that dietary gangliosides attenuate signaling processes that are a hallmark of inflammatory bowel disease (IBD). Gangliosides decrease pro-inflammatory markers, improve intestinal permeability, and reduce symptoms characteristic in patients with IBD. The objective of this study was to examine mechanisms by which dietary gangliosides exert beneficial effects on intestinal health. Methods: Studies were conducted in vitro using CaCo-2 intestinal epithelial cells. Gangliosides were extracted from milk powder and incubated with differentiated CaCo-2 cells after exposure to pro-inflammatory stimuli. Gut barrier integrity was assessed by electron microscopy, epithelial barrier function was examined by measuring transepithelial electric resistance, and content of HBD-2, IL-23, NF-ÎșB, and sPLA2 was assessed by ELISA. Results: Ganglioside attenuated the decrease in integrity of tight junctions induced by pro-inflammatory stimuli and improved epithelial barrier function (P \u3c 0.05). Ganglioside decreased the basolateral secretion of sPLA2 (P ≀ 0.05), lowered HBD-2 and IL-23 levels (P ≀ 0.05), and inhibited NF-ÎșB activation (P ≀ 0.05). Conclusions: In summary, the present study indicates that ganglioside GD3 improves intestinal integrity by altering sPLA2 trafficking, and the production of pro-inflammatory mediators is mitigated by decreasing assembly of the NF-ÎșB complex. Dietary gangliosides may have promising potential beneficial effects in IBD as decreased inflammatory signaling, improved intestinal integrity, and maintenance of epithelial barrier function have been demonstrated in vitro

    AA and DHA are Decreased in Paediatric AD/HD and Inattention is Ameliorated by Increased Plasma DHA

    Get PDF
    The purpose of this study was to assess long chain polyunsaturated fatty acid (LCPUFA) status in relation to socio-behavioral outcomes in children with Attention Deficit/Hyperactivity Disorder (AD/HD). In a case-control design, plasma phospholipid fatty acid content was assessed in children aged 5–12 years with AD/HD and in typically functioning children. Dietary intakes of LCPUFAs arachidonic acid (AA; 20:4n6) and docosahexaenoic acid (DHA; 22:6n3) were quantified using a four-day food record, polymorphisms were determined in FADS1 and FADS2, and socio-behavioral outcomes were assessed using the Conners 3 Parent Rating Scales in a cross section of children with AD/HD. Compared to typically functioning children, plasma AA and DHA were 40% lower in children with AD/HD. Median intake of AA, but not DHA, was higher in children with AD/HD compared to typically functioning children. Polymorphisms in FADS1 (rs174546) and FADS2 (174575) were associated with higher plasma linoleic acid (LA; 18:2n6) level. Plasma DHA level was inversely associated with inattention score. Despite having an elevated intake of AA, children diagnosed with AD/HD have a reduction in plasma AA level which may be due in part to polymorphisms in the fatty acid desaturase (FADS) gene cluster or increased conversion to AA-derived metabolites. Increasing intake of DHA may ameliorate symptoms of inattention in AD/HD

    Clinical and biological characterization of skeletal muscle tissue biopsies of surgical cancer patients

    Get PDF
    BACKGROUND: Researchers increasingly use intraoperative muscle biopsy to investigate mechanisms of skeletal muscle atrophy in patients with cancer. Muscles have been assessed for morphological, cellular, and biochemical features. The aim of this study was to conduct a state‐of‐the‐science review of this literature and, secondly, to evaluate clinical and biological variation in biopsies of rectus abdominis (RA) muscle from a cohort of patients with malignancies. METHODS: Literature was searched for reports on muscle biopsies from patients with a cancer diagnosis. Quality of reports and risk of bias were assessed. Data abstracted included patient characteristics and diagnoses, sample size, tissue collection and biobanking procedures, and results. A cohort of cancer patients (n = 190, 88% gastrointestinal malignancies), who underwent open abdominal surgery as part of their clinical care, consented to RA biopsy from the site of incision. Computed tomography (CT) scans were used to quantify total abdominal muscle and RA cross‐sectional areas and radiodensity. Biopsies were assessed for muscle fibre area (ÎŒm(2)), fibre types, myosin heavy chain isoforms, and expression of genes selected for their involvement in catabolic pathways of muscle. RESULTS: Muscle biopsy occurred in 59 studies (total N = 1585 participants). RA was biopsied intraoperatively in 40 studies (67%), followed by quadriceps (26%; percutaneous biopsy) and other muscles (7%). Cancer site and stage, % of male participants, and age were highly variable between studies. Details regarding patient medical history and biopsy procedures were frequently absent. Lack of description of the population(s) sampled and low sample size contributed to low quality and risk of bias. Weight‐losing cases were compared with weight stable cancer or healthy controls without considering a measure of muscle mass in 21 out of 44 studies. In the cohort of patients providing biopsy for this study, 78% of patients had preoperative CT scans and a high proportion (64%) met published criteria for sarcopenia. Fibre type distribution in RA was type I (46% ± 13), hybrid type I/IIA (1% ± 1), type IIA (36% ± 10), hybrid type IIA/D (15% ± 14), and type IID (2% ± 5). Sexual dimorphism was prominent in RA CT cross‐sectional area, mean fibre cross‐sectional area, and in expression of genes associated with muscle growth, apoptosis, and inflammation (P < 0.05). Medical history revealed multiple co‐morbid conditions and medications. CONCLUSIONS: Continued collaboration between researchers and cancer surgeons enables a more complete understanding of mechanisms of cancer‐associated muscle atrophy. Standardization of biobanking practices, tissue manipulation, patient characterization, and classification will enhance the consistency, reliability, and comparability of future studies

    Potential Biomarkers of Fat Loss as a Feature of Cancer Cachexia

    No full text
    Fat loss is associated with shorter survival and reduced quality of life in cancer patients. Effective intervention for fat loss in cachexia requires identification of the condition using prognostic biomarkers for early detection and prevention of further depletion. No biomarkers of fat mass alterations have been defined for application to the neoplastic state. Several inflammatory cytokines have been implicated in mediating fat loss associated with cachexia; however, plasma levels may not relate to adipose atrophy. Zinc-α2-glycoprotein may be a local catabolic mediator within adipose tissue rather than serving as a plasma biomarker of fat loss. Plasma glycerol and leptin associate with adipose tissue atrophy and mass, respectively; however, no study has evaluated their potential as a prognostic biomarker of cachexia-associated fat loss. This review confirms the need for further studies to identify valid prognostic biomarkers to identify loss of fat based on changes in plasma levels of biomarkers

    Dietary EPA+DHA Mitigate Hepatic Toxicity and Modify the Oxylipin Profile in an Animal Model of Colorectal Cancer Treated with Chemotherapy

    No full text
    Irinotecan (CPT-11) and 5-fluorouracil (5-FU) are commonly used to treat metastatic colorectal cancer, but chemotherapy-associated steatosis/steatohepatitis (CASSH) frequently accompanies their use. The objective of this study was to determine effect of CPT-11+5-FU on liver toxicity, liver oxylipins, and cytokines, and to explore whether these alterations could be modified by dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the form of fish oil (EPA+DHA). Tumor-bearing animals were administered CPT-11+5-FU and maintained on a control diet or a diet containing EPA+DHA (2.3 g/100 g). Livers were collected one week after chemotherapy for the analysis of oxylipins, cytokines, and markers of liver pathology (oxidized glutathione, GSSH; 4-hydroxynonenal, 4-HNE, and type-I collagen fiber). Dietary EPA+DHA prevented the chemotherapy-induced increases in liver GSSH (p p p p = 0.09) and eotaxin (p = 0.007) levels. Chemotherapy-induced liver injury results in distinct alterations in oxylipins and cytokines, and dietary EPA+DHA attenuates these pathophysiological effects

    n-3 polyunsaturated fatty acid supplementation during cancer chemotherapy

    Get PDF
    Evidence from several clinical trials suggests that n-3 polyunsaturated fatty acid (n-3 PUFA) supplementation during cancer chemotherapy improves patient outcomes related to chemotherapy tolerability, regardless of the type of chemotherapy used. While the effects of n-3 PUFA supplementation during chemotherapy have been the subject of several reviews, the mechanisms by which n-3 PUFA improve patient responses through improved chemotherapy tolerability are unclear. There are several barriers currently hindering interpretation and comparison of studies, including small sample sizes, poor patient compliance, and variation in supplementation format and dose. Expansion of standard-of-care for specific patient populations to include n-3 PUFA supplementation concurrent with chemotherapy may reduce costs associated with delayed treatment, toxicities and unplanned hospitalization during cancer chemotherapy. The purpose of this review is to identify barriers to understanding mechanisms of host protection, highlight considerations for future clinical trials, as well as to propose potential mechanisms by which n-3 PUFA supplementation improves chemotherapy tolerability and ultimately patient outcomes

    Determination of the Relative Efficacy of Eicosapentaenoic Acid and Docosahexaenoic Acid for Anti-Cancer Effects in Human Breast Cancer Models

    No full text
    Epidemiological studies have associated high fish oil consumption with decreased risk of breast cancer (BC). n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found in fish and fish oils exert anti-cancer effects. However, few studies have examined the relative efficacy of EPA and DHA alone and in mixtures on BC subtypes. This was the objective of the present review, as this research is a necessity for the translation of findings to human health and disease. The literature suggests that DHA has a greater anti-cancer effect in triple negative BC (TNBC). In estrogen positive (ER+) BC, DHA has a greater effect on cell viability, while both fatty acids have similar effects on apoptosis and proliferation. These effects are associated with preferential uptake of DHA into TNBC lipid rafts and EPA in ER+ BC. EPA:DHA mixtures have anti-cancer activity; however, the ratio of EPA:DHA does not predict the relative incorporation of these two fatty acids into membrane lipids as EPA appears to be preferentially incorporated. In summary, DHA and EPA should be considered separately in the context of BC prevention. The elucidation of optimal EPA:DHA ratios will be important for designing targeted n-3 LCPUFA treatments

    Potential Role of Omega-3 Fatty Acids on the Myogenic Program of Satellite Cells

    No full text
    Skeletal muscle loss is associated with aging as well as pathological conditions. Satellite cells (SCs) play an important role in muscle regeneration. Omega-3 fatty acids are widely studied in a variety of muscle wasting diseases; however, little is known about their impact on skeletal muscle regeneration. The aim of this review is to evaluate studies examining the effect of omega-3 fatty acids, α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid on the regulation of SC proliferation and differentiation. This review highlights mechanisms by which omega-3 fatty acids may modulate the myogenic program of the stem cell population within skeletal muscles and identifies considerations for future studies. It is proposed that minimally three myogenic transcriptional regulatory factors, paired box 7 (Pax7), myogenic differentiation 1 protein, and myogenin, should be measured to confirm the stage of SCs within the myogenic program affected by omega-3 fatty acids
    corecore