484 research outputs found

    ECG Biometric Recognition: Review, System Proposal, and Benchmark Evaluation

    Full text link
    Electrocardiograms (ECGs) have shown unique patterns to distinguish between different subjects and present important advantages compared to other biometric traits, such as difficulty to counterfeit, liveness detection, and ubiquity. Also, with the success of Deep Learning technologies, ECG biometric recognition has received increasing interest in recent years. However, it is not easy to evaluate the improvements of novel ECG proposed methods, mainly due to the lack of public data and standard experimental protocols. In this study, we perform extensive analysis and comparison of different scenarios in ECG biometric recognition. Both verification and identification tasks are investigated, as well as single- and multi-session scenarios. Finally, we also perform single- and multi-lead ECG experiments, considering traditional scenarios using electrodes in the chest and limbs and current user-friendly wearable devices. In addition, we present ECGXtractor, a robust Deep Learning technology trained with an in-house large-scale database and able to operate successfully across various scenarios and multiple databases. We introduce our proposed feature extractor, trained with multiple sinus-rhythm heartbeats belonging to 55,967 subjects, and provide a general public benchmark evaluation with detailed experimental protocol. We evaluate the system performance over four different databases: i) our in-house database, ii) PTB, iii) ECG-ID, and iv) CYBHi. With the widely used PTB database, we achieve Equal Error Rates of 0.14% and 2.06% in verification, and accuracies of 100% and 96.46% in identification, respectively in single- and multi-session analysis. We release the source code, experimental protocol details, and pre-trained models in GitHub to advance in the field.Comment: 11 pages, 4 figure

    Keystroke Biometrics in Response to Fake News Propagation in a Global Pandemic

    Full text link
    This work proposes and analyzes the use of keystroke biometrics for content de-anonymization. Fake news have become a powerful tool to manipulate public opinion, especially during major events. In particular, the massive spread of fake news during the COVID-19 pandemic has forced governments and companies to fight against missinformation. In this context, the ability to link multiple accounts or profiles that spread such malicious content on the Internet while hiding in anonymity would enable proactive identification and blacklisting. Behavioral biometrics can be powerful tools in this fight. In this work, we have analyzed how the latest advances in keystroke biometric recognition can help to link behavioral typing patterns in experiments involving 100,000 users and more than 1 million typed sequences. Our proposed system is based on Recurrent Neural Networks adapted to the context of content de-anonymization. Assuming the challenge to link the typed content of a target user in a pool of candidate profiles, our results show that keystroke recognition can be used to reduce the list of candidate profiles by more than 90%. In addition, when keystroke is combined with auxiliary data (such as location), our system achieves a Rank-1 identification performance equal to 52.6% and 10.9% for a background candidate list composed of 1K and 100K profiles, respectively.Comment: arXiv admin note: text overlap with arXiv:2004.0362

    BehavePassDB: Public Database for Mobile Behavioral Biometrics and Benchmark Evaluation

    Full text link
    Mobile behavioral biometrics have become a popular topic of research, reaching promising results in terms of authentication, exploiting a multimodal combination of touchscreen and background sensor data. However, there is no way of knowing whether state-of-the-art classifiers in the literature can distinguish between the notion of user and device. In this article, we present a new database, BehavePassDB, structured into separate acquisition sessions and tasks to mimic the most common aspects of mobile Human-Computer Interaction (HCI). BehavePassDB is acquired through a dedicated mobile app installed on the subjects' devices, also including the case of different users on the same device for evaluation. We propose a standard experimental protocol and benchmark for the research community to perform a fair comparison of novel approaches with the state of the art. We propose and evaluate a system based on Long-Short Term Memory (LSTM) architecture with triplet loss and modality fusion at score level.Comment: 11 pages, 3 figure

    Biometric Signature Verification Using Recurrent Neural Networks

    Full text link
    “© 2017 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”Architectures based on Recurrent Neural Networks (RNNs) have been successfully applied to many different tasks such as speech or handwriting recognition with state-of-The art results. The main contribution of this work is to analyse the feasibility of RNNs for on-line signature verification in real practical scenarios. We have considered a system based on Long Short-Term Memory (LSTM) with a Siamese architecture whose goal is to learn a similarity metric from pairs of signatures. For the experimental work, the BiosecurID database comprised of 400 users and 4 separated acquisition sessions are considered. Our proposed LSTM RNN system has outperformed the results of recent published works on the BiosecurID benchmark in figures ranging from 17.76% to 28.00% relative verification performance improvement for skilled forgeriesThis work has been supported by project TEC2015-70627-R MINECO/FEDER and by UAM-CecaBank Project. Ruben Tolosana is supported by a FPU Fellowship from Spanish MEC
    corecore