230 research outputs found
Efficacy of temsirolimus in metastatic chromophobe renal cell carcinoma
<p>Background: Renal cell carcinoma (RCC) is a histopathologically and molecularly heterogeneous disease with the chromophobe subtype (chRCC) accounting for approximately 5% of all cases. The median overall survival of advanced RCC has improved significantly since the advent of tyrosine kinase inhibitors and mammalian target of rapamycin (mTOR) inhibitors. However, high-quality evidence for the use of new generation tyrosine kinase inhibitors in patients with advanced chRCC is lacking. Few published case reports have highlighted the use of temsirolimus in chRCC.</p>
<p>Case presentation: Here, we report the case of a 36-year-old Caucasian woman with metastatic chRCC with predominantly skeletal metastases who was refractory to sunitinib who demonstrated a durable clinical response to temsirolimus lasting 20 months. We review the available evidence pertaining to the use of new generation molecularly targeted agents, in particular mTOR inhibitors in chRCC and discuss their emerging role in the management of this disease which would aid the oncologists faced with the challenge of treating this rare type of RCC.</p>
<p>Conclusion: Conducting randomised clinical trials in this rarer sub-group of patients would be challenging and our case report and the evidence reviewed would guide the physicians to make informed decision regarding the management of these patients.</p>
C-reactive protein in degenerative aortic valve stenosis
Degenerative aortic valve stenosis includes a range of disorder severity from mild leaflet thickening without valve obstruction, "aortic sclerosis", to severe calcified aortic stenosis. It is a slowly progressive active process of valve modification similar to atherosclerosis for cardiovascular risk factors, lipoprotein deposition, chronic inflammation, and calcification. Systemic signs of inflammation, as wall and serum C-reactive protein, similar to those found in atherosclerosis, are present in patients with degenerative aortic valve stenosis and may be expression of a common disease, useful in monitoring of stenosis progression
Machine-Part cell formation through visual decipherable clustering of Self Organizing Map
Machine-part cell formation is used in cellular manufacturing in order to
process a large variety, quality, lower work in process levels, reducing
manufacturing lead-time and customer response time while retaining flexibility
for new products. This paper presents a new and novel approach for obtaining
machine cells and part families. In the cellular manufacturing the fundamental
problem is the formation of part families and machine cells. The present paper
deals with the Self Organising Map (SOM) method an unsupervised learning
algorithm in Artificial Intelligence, and has been used as a visually
decipherable clustering tool of machine-part cell formation. The objective of
the paper is to cluster the binary machine-part matrix through visually
decipherable cluster of SOM color-coding and labelling via the SOM map nodes in
such a way that the part families are processed in that machine cells. The
Umatrix, component plane, principal component projection, scatter plot and
histogram of SOM have been reported in the present work for the successful
visualization of the machine-part cell formation. Computational result with the
proposed algorithm on a set of group technology problems available in the
literature is also presented. The proposed SOM approach produced solutions with
a grouping efficacy that is at least as good as any results earlier reported in
the literature and improved the grouping efficacy for 70% of the problems and
found immensely useful to both industry practitioners and researchers.Comment: 18 pages,3 table, 4 figure
Catheter Balloon Adjustment of the Pulmonary Artery Band: Feasibility and Safety
The study aimed to assess the feasibility and safety of increasing pulmonary artery band (PAB) diameter by catheter-based PAB balloon dilation (PABBD). Eight dilations were performed between October 2006 and December 2008. Hemoclips were used to fix PABs surgically in a procedure designed to permit progressive clip dislodgment in a controlled manner. The PABBD resulted in gradual band loosening until the desired physiologic state was achieved. At time of PABBD, the patients had a mean age of 6 months (range 3–14 months) and a mean weight of 5 kg (range 2.6–7.3 kg). The median time from PAB placement until PABBD was 4.5 months (range 1–9 months). The single-balloon technique was used in seven cases (serial dilations in 5 cases) and the double-balloon technique in one case. The PABBDs were successful for all the patients, who experienced a mean saturation increase of 75–89% (P = 0.01) (mean increase of 20%), a mean PAB gradient decrease from 69 to 36 mmHg (P = 0.002) (mean decrease of 49%), and a mean band site diameter increase from 4.1 to 6.1 mm (P = 0.01) (mean increase of 45%). The only complication was transient pulmonary edema in one patient. The PABBD procedure is a feasible and safe method for increasing pulmonary blood flow in a staged manner and may eliminate the need for surgical band removal in some cases
Functional analysis of the C-reactive protein (CRP) gene -717A>G polymorphism associated with coronary heart disease
<p>Abstract</p> <p>Background</p> <p>Atherosclerosis underlies the major pathophysiological mechanisms of coronary heart disease (CHD), and inflammation contributes to all phases of atherosclerosis. C-reactive protein (CRP), a sensitive, but nonspecific marker of inflammation has been shown to play proatherogenic roles in the process of atherosclerosis. Our previous report showed that rs2794521 (-717A>G), located in the promoter of the CRP gene, was independently associated with CHD in Chinese subjects. In the present study, we tried to investigate the biological significance of this genetic variation <it>in vitro</it>.</p> <p>Methods</p> <p>The influence of G to A substitution at the site of rs2794521 on the transcriptional activity of the promoter of the CRP gene was assessed by luciferase reporter assay, and protein binding to the site of rs2794521 was detected by EMSA assay.</p> <p>Results</p> <p>The G to A exchange at the site of rs2794521 resulted in an increased transcriptional activity of the promoter of CRP gene, and glucocorticoid receptor (GR) protein factor bound drastically differently to the A and G alleles at the site of rs2794521.</p> <p>Conclusion</p> <p>These results provided functional evidence supporting the association of the SNP rs2794521 of the CRP gene with CHD probably through regulating the expression level of CRP by different variations of rs2794521.</p
The Progression of Liver Fibrosis Is Related with Overexpression of the miR-199 and 200 Families
Chronic hepatitis C (CH) can develop into liver cirrhosis (LC) and hepatocellular carcinoma (HCC). Liver fibrosis and HCC development are strongly correlated, but there is no effective treatment against fibrosis because the critical mechanism of progression of liver fibrosis is not fully understood. microRNAs (miRNAs) are now essential to the molecular mechanisms of several biological processes. In order to clarify how the aberrant expression of miRNAs participates in development of the liver fibrosis, we analyzed the liver fibrosis in mouse liver fibrosis model and human clinical samples
Ethanol-Mediated Regulation of Cytochrome P450 2A6 Expression in Monocytes: Role of Oxidative Stress-Mediated PKC/MEK/Nrf2 Pathway
Cytochrome P450 2A6 (CYP2A6) is known to metabolize nicotine, the major constituent of tobacco, leading to the production of toxic metabolites and induction of oxidative stress that result in liver damage and lung cancer. Recently, we have shown that CYP2A6 is induced by ethanol and metabolizes nicotine into cotinine and other metabolites leading to generation of reactive oxygen species (ROS) in U937 monocytes. However, the mechanism by which CYP2A6 is induced by ethanol is unknown. In this study, we have examined the role of the PKC/Nrf2 pathway (protein kinase C-mediated phosphorylation and translocation of nuclear erythroid 2-related factor 2 to the nucleus) in ethanol-mediated CYP2A6 induction. Our results showed that 100 mM ethanol significantly induced CYP2A6 mRNA and protein (∼150%) and increased ROS formation, and induction of gene expression and ROS were both completely blocked by treatment with either a CYP2E1 inhibitor (diallyl sulfide) or an antioxidant (vitamin C). The results suggest the role of oxidative stress in the regulation of CYP2A6 expression. Subsequently, we investigated the role of Nrf2 pathway in oxidative stress-mediated regulation of CYP2A6 expression in U937 monocytes. Our results showed that butylated hydroxyanisole, a stabilizer of nuclear Nrf2, increased CYP2A6 levels >200%. Staurosporine, an inhibitor of PKC, completely abolished ethanol-induced CYP2A6 expression. Furthermore, our results showed that a specific inhibitor of mitogen-activated protein kinase kinase (MEK) (U0126) completely abolished ethanol-mediated CYP2A6 induction and Nrf2 translocation. Overall, these results suggest that CYP2E1-mediated oxidative stress produced as a result of ethanol metabolism translocates Nrf2 into the nucleus through PKC/MEK pathway, resulting in the induction of CYP2A6 in monocytes. An increased level of CYP2A6 in monocytes is expected to further increase oxidative stress in smokers through CYP2A6-mediated nicotine metabolism. Thus, this study has clinical relevance because of the high incidence of alcohol use among smokers, especially in HIV-infected individuals
- …