5 research outputs found

    Inhibition of miR-21 by 3′/5′-serinyl-capped 2′-O-methyl RNA interspersed with 2′-O-(2-amino-3-methoxypropyl) uridine units

    No full text
    miRNAs are highly conserved class of small ncRNAs whose involvement in human pathophysiologies is extensively investigated. MiR-21 is a well established oncogenic miRNA whose deregulation plays a significant role in onset and progression of cancer. The need of novel approaches to downregulate miR-21 is rapidly expanding. Potent inhibition of miR-21 is achieved by chemically modified 2′-O-methyl RNA oligonucleotide. The serinol capping at 3′ and 5′ends and the interspersed 2′-O-(R-2-amino-3-methoxypropyl) uridine units enhance the nuclease resistance and efficacy of 2′-O-methyl RNA for the inhibition of miR-21. This represents a simple and novel modification for developing oligonucleotide-based therapeutics

    Synthetic, Structural, and RNA Binding Studies on 2-Aminopyridine-Modified Triplex-Forming Peptide Nucleic Acids

    No full text
    The development of new RNA-binding ligands is attracting increasing interest in fundamental science and the pharmaceutical industry. The goal of this study was to improve the RNA binding properties of triplex-forming peptide nucleic acids (PNAs) by further increasing the pK a of 2-aminopyridine (M). Protonation of M was the key for enabling triplex formation at physiological pH in earlier studies. Substitution on M by an electron-donating 4-methoxy substituent resulted in slight destabilization of the PNA–dsRNA triplex, contrary to the expected stabilization due to more favorable protonation. To explain this unexpected result, the first NMR structural studies were performed on an M-modified PNA–dsRNA triplex which, combined with computational modeling identified unfavorable steric and electrostatic repulsion between the 4-methoxy group of M and the oxygen of the carbonyl group connecting the adjacent nucleobase to PNA backbone. The structural studies also provided insights into hydrogen-bonding interactions that might be responsible for the high affinity and unusual RNA-binding preference of PNAs

    A Single Amide Linkage in the Passenger Strand Suppresses Its Activity and Enhances Guide Strand Targeting of siRNAs

    No full text
    Potential <i>in vivo</i> applications of RNA interference (RNAi) require suppression of various off-target activities. Herein, we report that replacement of a single phosphate linkage between the first and second nucleosides of the passenger strand with an amide linkage almost completely abolished its undesired activity and restored the desired activity of guide strands that had been compromised by unfavorable amide modifications. Molecular modeling suggested that the observed effect was most likely due to suppressed loading of the amide-modified strand into Ago2 caused by inability of amide to adopt the conformation required for the backbone twist that docks the first nucleotide of the guide strand in the MID domain of Ago2. Eliminating off-target activity of the passenger strand will be important for improving therapeutic potential of RNAi

    Nucleobase-Modified Triplex-Forming Peptide Nucleic Acids for Sequence-Specific Recognition of Double-Stranded RNA

    No full text
    Because of the important roles noncoding RNAs play in gene expression, their sequence-specific recognition is important for both fundamental science and the pharmaceutical industry. However, most noncoding RNAs fold in complex helical structures that are challenging problems for molecular recognition. Herein, we describe a method for sequence-specific recognition of double-stranded RNA using peptide nucleic acids (PNAs) that form triple helices in the major grove of RNA under physiologically relevant conditions. We also outline methods for solid-phase conjugation of PNA with cell-penetrating peptides and fluorescent dyes. Protocols for PNA preparation and binding studies using isothermal titration calorimetry are described in detail
    corecore