3 research outputs found

    Extraction and Fractionation of Pigments from Saccharina latissima (Linnaeus, 2006) Using an Ionic Liquid plus Oil plus Water System

    Get PDF
    There is a strong industrial interest in the development of greener and more sustainable processes based on the use of renewable resources, and a biorefinery based on marine resources, such as macroalgae, stands as a major opportunity toward that end. In this work, Saccharina latissima (Linnaeus), a brown macroalga, was used as a source of pigments to develop an integrated platform that is able to promote the extraction and separation of chlorophyll and fucoxanthin in one single step. The process was studied, and its operational conditions were optimized with yields of extraction of chlorophyll and fucoxanthin of 4.93 ± 0.22 mgchl·gdry biomass–1 and 1956 ± 84 μgfuco·gdry biomass–1, respectively. These results were achieved with extraction systems composed of 84% of an aqueous solution of a tensioactive phosphonium-based ionic liquid (IL) at 350 mM + 16% of sunflower oil, during 40 min, using a solid–liquid ratio of 0.017 gdry biomass·mLsolvent–1. After the separation of both aqueous IL-rich and oil-rich phases, the IL content in both phases was investigated, the oil phase being free of IL. Envisioning the industrial potential of the process developed in this work, the recovery of the IL from the aqueous IL-rich phase of the initial system was attempted by a back-extraction using organic solvents immiscible in water, being shown that 82% of the IL can be recovered and reused in new cycles of extraction. The environmental and economic impacts of the final process proposed for the extraction and fractionation of chlorophyll and fucoxanthin were evaluated. Different scenarios were considered, but summing up the main results, the solvents’ recycling allowed better results, proving the economic and environmental viability of the overall process

    The “Bright Side” of Cyanobacteria: Revising the Nuisance Potential and Prospecting Innovative Biotechnology-Based Solutions to Integrate Water Management Programs

    No full text
    Global warming and the anthropogenic degradation of water quality are pointed out as main causes of the worldwide increase in frequency, severity, and duration of harmful algal blooms (HABs). Cyanobacteria, major constituents of HABs, can cause ecological, economic, and human health problems, configuring a "dark side"requiring management attention. Their growth can be potentiated by climate change consequences, highlighting further the urgency of improving HABs management strategies to ensure water quality. An innovative perspective for cyanobacteria management is the exploitation of their "bright side". Several exploitable products produced by cyanobacteria (e.g., bioactive pigments, lipids, proteins) present high market value. Thus, this work provides a critical perspective on how HABs management may be connected with biotechnology in the future. We propose the use of the biomass of cyanobacteria blooms physically removed in traditional control actions (much needed to ensure environmental and even human health safety) as a feedstock for future valorization, thus allying profit to water quality management, in a win-win relationship between economics and environmental sustainability. Such a proposal was validated with an economic analysis, which evidenced a relevant potential for a positive return (hence rendering profit likely to occur), both considering only the delivery of harvested biomass to production units and the full valuation route from harvesting to the selling of the extracted/purified product using phycocyanin as a model
    corecore