144 research outputs found

    Predicting adverse long-term neurocognitive outcomes after pediatric intensive care unit admission

    Get PDF
    Background and objective: Critically ill children may suffer from impaired neurocognitive functions years after ICU (intensive care unit) discharge. To assess neurocognitive functions, these children are subjected to a fixed sequence of tests. Undergoing all tests is, however, arduous for former pediatric ICU patients, resulting in interrupted evaluations where several neurocognitive deficiencies remain undetected. As a solution, we propose using machine learning to predict the optimal order of tests for each child, reducing the number of tests required to identify the most severe neurocognitive deficiencies. Methods: We have compared the current clinical approach against several machine learning methods, mainly multi-target regression and label ranking methods. We have also proposed a new method that builds several multi-target predictive models and combines the outputs into a ranking that prioritizes the worse neurocognitive outcomes. We used data available at discharge, from children who participated in the PEPaNIC-RCT trial (ClinicalTrials.gov-NCT01536275), as well as data from a 2-year follow-up study. The institutional review boards at each participating site have also approved this follow-up study (ML8052; NL49708.078; Pro00038098). Results: Our proposed method managed to outperform other machine learning methods and also the current clinical practice. Precisely, our method reaches approximately 80% precision when considering top-4 outcomes, in comparison to 65% and 78% obtained by the current clinical practice and the state-of-the-art method in label ranking, respectively. Conclusions: Our experiments demonstrated that machine learning can be competitive or even superior to the current testing order employed in clinical practice, suggesting that our model can be used to severely reduce the number of tests necessary for each child. Moreover, the results indicate that possible long-term adverse outcomes are already predictable as early as at ICU discharge. Thus, our work can be seen as the first step to allow more personalized follow-up after ICU discharge leading to preventive care rather than curative.</p

    Predicting adverse long-term neurocognitive outcomes after pediatric intensive care unit admission

    Get PDF
    Background and objective: Critically ill children may suffer from impaired neurocognitive functions years after ICU (intensive care unit) discharge. To assess neurocognitive functions, these children are subjected to a fixed sequence of tests. Undergoing all tests is, however, arduous for former pediatric ICU patients, resulting in interrupted evaluations where several neurocognitive deficiencies remain undetected. As a solution, we propose using machine learning to predict the optimal order of tests for each child, reducing the number of tests required to identify the most severe neurocognitive deficiencies. Methods: We have compared the current clinical approach against several machine learning methods, mainly multi-target regression and label ranking methods. We have also proposed a new method that builds several multi-target predictive models and combines the outputs into a ranking that prioritizes the worse neurocognitive outcomes. We used data available at discharge, from children who participated in the PEPaNIC-RCT trial (ClinicalTrials.gov-NCT01536275), as well as data from a 2-year follow-up study. The institutional review boards at each participating site have also approved this follow-up study (ML8052; NL49708.078; Pro00038098). Results: Our proposed method managed to outperform other machine learning methods and also the current clinical practice. Precisely, our method reaches approximately 80% precision when considering top-4 outcomes, in comparison to 65% and 78% obtained by the current clinical practice and the state-of-the-art method in label ranking, respectively. Conclusions: Our experiments demonstrated that machine learning can be competitive or even superior to the current testing order employed in clinical practice, suggesting that our model can be used to severely reduce the number of tests necessary for each child. Moreover, the results indicate that possible long-term adverse outcomes are already predictable as early as at ICU discharge. Thus, our work can be seen as the first step to allow more personalized follow-up after ICU discharge leading to preventive care rather than curative.</p

    Ontology of core data mining entities

    Get PDF
    In this article, we present OntoDM-core, an ontology of core data mining entities. OntoDM-core defines themost essential datamining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. The ontology has been thoroughly assessed following the practices in ontology engineering, is fully interoperable with many domain resources and is easy to extend

    S.cerevisiae Complex Function Prediction with Modular Multi-Relational Framework

    Full text link
    Proceeding of: 23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2010, Córdoba, Spain, June 1-4, 2010Determining the functions of genes is essential for understanding how the metabolisms work, and for trying to solve their malfunctions. Genes usually work in groups rather than isolated, so functions should be assigned to gene groups and not to individual genes. Moreover, the genetic knowledge has many relations and is very frequently changeable. Thus, a propositional ad-hoc approach is not appropriate to deal with the gene group function prediction domain. We propose the Modular Multi-Relational Framework (MMRF), which faces the problem from a relational and flexible point of view. The MMRF consists of several modules covering all involved domain tasks (grouping, representing and learning using computational prediction techniques). A specific application is described, including a relational representation language, where each module of MMRF is individually instantiated and refined for obtaining a prediction under specific given conditions.This research work has been supported by CICYT, TRA 2007-67374-C02-02 project and by the expert biological knowledge of the Structural Computational Biology Group in Spanish National Cancer Research Centre (CNIO). The authors would like to thank members of Tilde tool developer group in K.U.Leuven for providing their help and many useful suggestions.Publicad

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Glycolysis Upregulation Is Neuroprotective As A Compensatory Mechanism In Als

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS), is a fatal neurodegenerative disorder, with TDP-43 inclusions as a major pathological hallmark. Using a Drosophila model of TDP-43 proteinopathy we found significant alterations in glucose metabolism including increased pyruvate, suggesting that modulating glycolysis may be neuroprotective. Indeed, a high sugar diet improves locomotor and lifespan defects caused by TDP-43 proteinopathy in motor neurons or glia, but not muscle, suggesting that metabolic dysregulation occurs in the nervous system. Overexpressing human glucose transporter GLUT-3 in motor neurons mitigates TDP-43 dependent defects in synaptic vesicle recycling and improves locomotion. Furthermore, PFK mRNA, a key indicator of glycolysis, is upregulated in flies and patient derived iPSC motor neurons with TDP-43 pathology. Surprisingly, PFK overexpression rescues TDP-43 induced locomotor deficits. These findings from multiple ALS models show that mechanistically, glycolysis is upregulated in degenerating motor neurons as a compensatory mechanism and suggest that increased glucose availability is protective
    corecore