140 research outputs found

    Ontology of core data mining entities

    Get PDF
    In this article, we present OntoDM-core, an ontology of core data mining entities. OntoDM-core defines themost essential datamining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. The ontology has been thoroughly assessed following the practices in ontology engineering, is fully interoperable with many domain resources and is easy to extend

    S.cerevisiae Complex Function Prediction with Modular Multi-Relational Framework

    Full text link
    Proceeding of: 23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2010, Córdoba, Spain, June 1-4, 2010Determining the functions of genes is essential for understanding how the metabolisms work, and for trying to solve their malfunctions. Genes usually work in groups rather than isolated, so functions should be assigned to gene groups and not to individual genes. Moreover, the genetic knowledge has many relations and is very frequently changeable. Thus, a propositional ad-hoc approach is not appropriate to deal with the gene group function prediction domain. We propose the Modular Multi-Relational Framework (MMRF), which faces the problem from a relational and flexible point of view. The MMRF consists of several modules covering all involved domain tasks (grouping, representing and learning using computational prediction techniques). A specific application is described, including a relational representation language, where each module of MMRF is individually instantiated and refined for obtaining a prediction under specific given conditions.This research work has been supported by CICYT, TRA 2007-67374-C02-02 project and by the expert biological knowledge of the Structural Computational Biology Group in Spanish National Cancer Research Centre (CNIO). The authors would like to thank members of Tilde tool developer group in K.U.Leuven for providing their help and many useful suggestions.Publicad

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Glycolysis Upregulation Is Neuroprotective As A Compensatory Mechanism In Als

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS), is a fatal neurodegenerative disorder, with TDP-43 inclusions as a major pathological hallmark. Using a Drosophila model of TDP-43 proteinopathy we found significant alterations in glucose metabolism including increased pyruvate, suggesting that modulating glycolysis may be neuroprotective. Indeed, a high sugar diet improves locomotor and lifespan defects caused by TDP-43 proteinopathy in motor neurons or glia, but not muscle, suggesting that metabolic dysregulation occurs in the nervous system. Overexpressing human glucose transporter GLUT-3 in motor neurons mitigates TDP-43 dependent defects in synaptic vesicle recycling and improves locomotion. Furthermore, PFK mRNA, a key indicator of glycolysis, is upregulated in flies and patient derived iPSC motor neurons with TDP-43 pathology. Surprisingly, PFK overexpression rescues TDP-43 induced locomotor deficits. These findings from multiple ALS models show that mechanistically, glycolysis is upregulated in degenerating motor neurons as a compensatory mechanism and suggest that increased glucose availability is protective

    A joint physics and radiobiology DREAM team vision - Towards better response prediction models to advance radiotherapy.

    Get PDF
    Radiotherapy developed empirically through experience balancing tumour control and normal tissue toxicities. Early simple mathematical models formalized this practical knowledge and enabled effective cancer treatment to date. Remarkable advances in technology, computing, and experimental biology now create opportunities to incorporate this knowledge into enhanced computational models. The ESTRO DREAM (Dose Response, Experiment, Analysis, Modelling) workshop brought together experts across disciplines to pursue the vision of personalized radiotherapy for optimal outcomes through advanced modelling. The ultimate vision is leveraging quantitative models dynamically during therapy to ultimately achieve truly adaptive and biologically guided radiotherapy at the population as well as individual patient-based levels. This requires the generation of models that inform response-based adaptations, individually optimized delivery and enable biological monitoring to provide decision support to clinicians. The goal is expanding to models that can drive the realization of personalized therapy for optimal outcomes. This position paper provides their propositions that describe how innovations in biology, physics, mathematics, and data science including AI could inform models and improve predictions. It consolidates the DREAM team's consensus on scientific priorities and organizational requirements. Scientifically, it stresses the need for rigorous, multifaceted model development, comprehensive validation and clinical applicability and significance. Organizationally, it reinforces the prerequisites of interdisciplinary research and collaboration between physicians, medical physicists, radiobiologists, and computational scientists throughout model development. Solely by a shared understanding of clinical needs, biological mechanisms, and computational methods, more informed models can be created. Future research environment and support must facilitate this integrative method of operation across multiple disciplines

    Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells

    Get PDF
    Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification by deubiquitinating enzymes (DUBs) impacts genome maintenance in vivo is largely unknown. To address this question, we generated mice deficient for Ub-specific protease 3 (USP3; Usp3{delta}/{delta}), a histone H2A DUB which negatively regulates ubiquitin-dependent DDR signaling. Notably, USP3 deletion increased the levels of histone ubiquitination in adult tissues, reduced the hematopoietic stem cell (HSC) reserves over time, and shortened animal life span. Mechanistically, our data show that USP3 is important in HSC homeostasis, preserving HSC self-renewal, and repopulation potential in vivo and proliferation in vitro. A defective DDR and unresolved spontaneous DNA damage contribute to cell cycle restriction of Usp3{delta}/{delta} HSCs. Beyond the hematopoietic system, Usp3{delta}/{delta} animals spontaneously developed tumors, and primary Usp3{delta}/{delta} cells failed to preserve chromosomal integrity. These findings broadly support the regulation of chromatin ubiquitination as a key pathway in preserving tissue function through modulation of the response to genotoxic stress
    corecore