58 research outputs found

    Floral patterns in the California Current System off southern California: 1990–1996

    Get PDF
    In 1990, CalCOFI cruises began routine collection of samples for the enumeration of phytoplankton species. From each quarterly cruise, nearsurface samples from 34 stations are pooled into four regional samples prior to counting. This paper summarizes the first 6.5 years of the program in order to identify major large-scale patterns of species composition and fluctuations. A total of 312 species were recognized during this study. Recurrent group analysis defines two major floral clusters. The first is composed of diatoms characteristic of enriched regions. This cluster is most abundant in the northeastern region and often attains maximum abundances in the spring. Seventy-two percent of the variability of chlorophyll is accounted for by the variability of these species. The second cluster is composed of species common in the offshore central North Pacific. These species have relatively low spatial and temporal variability in the study region. There is no detectable seasonality. In neither cluster can interannual variability be detected above seasonal variability, spatial variability and error. These patterns differ from the geographic patterns of zooplankton species in the region, which are often dominated by fauna from the subarctic North Pacific and transition zone. The apparent absence of a similar subarctic flora is briefly discussed

    A statistical analysis of subsampling and an evaluation of the Folsom plankton splitter

    Full text link
    Subsampling techniques are important for the determination of precise plankton density estimates. A binomial model of random subsampling, and its Poisson extension, were developed for the purpose of evaluating the performance of compartment-type plankton subsamplers. Two approaches were used to assess the performance of the Folsom plankton splitter on an extensive series of nearshore Lake Michigan crustacean zooplankton samples collected between 1974 and 1979. First, Folsom subsamples were observed to be significantly (p < 0.05) more variable than expected from the random model of subsampling. Second, a random effects ANOVA model was used to compare fractions of the total variance in density estimates that were attributable to subsampling and sampling phases of a specially designed study. Departures from randomness in subsampling were sufficiently small that an analysis of optimal allocation of effort between subsampling and sampling phases, based on the ANOVA model, indicated that only one to three subsamples needed to be examined per sample.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42920/1/10750_2004_Article_BF00016403.pd

    Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses

    Get PDF
    Many diatoms that inhabit low-nutrient waters of the open ocean live in close association with cyanobacteria. Some of these associations are believed to be mutualistic, where N2-fixing cyanobacterial symbionts provide N for the diatoms. Rates of N2 fixation by symbiotic cyanobacteria and the N transfer to their diatom partners were measured using a high-resolution nanometer scale secondary ion mass spectrometry approach in natural populations. Cell-specific rates of N2 fixation (1.15–71.5 fmol N per cell h−1) were similar amongst the symbioses and rapid transfer (within 30 min) of fixed N was also measured. Similar growth rates for the diatoms and their symbionts were determined and the symbiotic growth rates were higher than those estimated for free-living cells. The N2 fixation rates estimated for Richelia and Calothrix symbionts were 171–420 times higher when the cells were symbiotic compared with the rates estimated for the cells living freely. When combined, the latter two results suggest that the diatom partners influence the growth and metabolism of their cyanobacterial symbionts. We estimated that Richelia fix 81–744% more N than needed for their own growth and up to 97.3% of the fixed N is transferred to the diatom partners. This study provides new information on the mechanisms controlling N input into the open ocean by symbiotic microorganisms, which are widespread and important for oceanic primary production. Further, this is the first demonstration of N transfer from an N2 fixer to a unicellular partner. These symbioses are important models for molecular regulation and nutrient exchange in symbiotic systems

    Multivariate statistical analysis of net diatom species distributions in the Southwestern Atlantic and Indian Ocean

    Full text link
    Vertical net haul diatom assemblages from near South Georgia, and from between Africa and Antarctica, were examined and compared. Variation among South Georgia stations was examined by principal component, cluster and canonical discriminant analyses. Diatom distributions provide evidence for at least two distinct water masses. The region north of the island is characterized by neritic, temperate diatoms and by an assemblage with low species diversity. The region south of the island is characterized by oceanic, antarctic species and relatively high species diversity. The regions are most distinct to the west of the island, intergrading east of the island. Within the north-south division, five station groupings were detected on the basis of distribution of dominant net diatoms. By comparing classical species ecological categorizations to results of principal component analysis, a “neritic-oceanic” factor was identified from net diatom distributions. This factor was common to both areas in spite of the fact that Biscoe and Agulhas collections were from different seasons.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46982/1/300_2004_Article_BF00446041.pd

    A Brief History of Marine Litter Research

    Full text link
    corecore