123 research outputs found

    Protein Structure along the Order–Disorder Continuum

    Get PDF
    Thermal fluctuations cause proteins to adopt an ensemble of conformations wherein the relative stability of the different ensemble members is determined by the topography of the underlying energy landscape. “Folded” proteins have relatively homogeneous ensembles, while “unfolded” proteins have heterogeneous ensembles. Hence, the labels “folded” and “unfolded” represent attempts to provide a qualitative characterization of the extent of structural heterogeneity within the underlying ensemble. In this work, we introduce an information-theoretic order parameter to quantify this conformational heterogeneity. We demonstrate that this order parameter can be estimated in a straightforward manner from an ensemble and is applicable to both unfolded and folded proteins. In addition, a simple formula for approximating the order parameter directly from crystallographic B factors is presented. By applying these metrics to a large sample of proteins, we show that proteins span the full range of the order–disorder axis.National Institutes of Health (U.S.) (NIH Grant 5R21NS063185-02

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases

    Comparative Molecular Analysis of Primary Central Nervous System Lymphomas and Matched Vitreoretinal Lymphomas by Vitreous Liquid Biopsy

    No full text
    Primary Central Nervous System Lymphoma (PCNSL) is a lymphoid malignancy of the brain that occurs in ~1500 patients per year in the US. PCNSL can spread to the vitreous and retina, where it is known as vitreoretinal lymphoma (VRL). While confirmatory testing for diagnosis is dependent on invasive brain tissue or cerebrospinal fluid sampling, the ability to access the vitreous as a proximal biofluid for liquid biopsy to diagnose PCNSL is an attractive prospect given ease of access and minimization of risks and complications from other biopsy strategies. However, the extent to which VRL, previously considered genetically identical to PCNSL, resembles PCNSL in the same individual with respect to genetic alterations, diagnostic strategies, and precision-medicine based approaches has hitherto not been explored. Furthermore, the degree of intra-patient tumor genomic heterogeneity between the brain and vitreous sites has not been studied. In this work, we report on targeted DNA next-generation sequencing (NGS) of matched brain and vitreous samples in two patients who each harbored VRL and PCSNL. Our strategy showed enhanced sensitivity for molecular diagnosis confirmation over current clinically used vitreous liquid biopsy methods. We observed a clonal relationship between the eye and brain samples in both patients, which carried clonal CDKN2A deep deletions, a highly recurrent alteration in VRL patients, as well as MYD88 p.L265P activating mutation in one patient. Several subclonal alterations, however, in the genes SETD2, BRCA2, TERT, and broad chromosomal regions showed heterogeneity between the brain and the eyes, between the two eyes, and among different regions of the PCNSL brain lesion. Taken together, our data show that NGS of vitreous liquid biopsies in PCNSL patients with VRL highlights shared and distinct genetic alterations that suggest a common origin for these lymphomas, but with additional site-specific alterations. Liquid biopsy of VRL accurately replicates the findings for PCNSL truncal (tumor-initiating) genomic alterations; it can also nominate precision medicine interventions and shows intra-patient heterogeneity in subclonal alterations. To the best of our knowledge, this study represents the first interrogation of genetic underpinnings of PCNSL with matched VRL samples. Our findings support continued investigation into the utility of vitreous liquid biopsy in precision diagnosis and treatment of PCNSL/VRL

    Induction of sarcomas by mutant IDH2

    No full text
    More than 50% of patients with chondrosarcomas exhibit gain-of-function mutations in either isocitrate dehydrogenase 1 (IDH1) or IDH2. In this study, we performed genome-wide CpG methylation sequencing of chondrosarcoma biopsies and found that IDH mutations were associated with DNA hypermethylation at CpG islands but not other genomic regions. Regions of CpG island hypermethylation were enriched for genes implicated in stem cell maintenance/differentiation and lineage specification. In murine 10T1/2 mesenchymal progenitor cells, expression of mutant IDH2 led to DNA hypermethylation and an impairment in differentiation that could be reversed by treatment with DNA-hypomethylating agents. Introduction of mutant IDH2 also induced loss of contact inhibition and generated undifferentiated sarcomas in vivo. The oncogenic potential of mutant IDH2 correlated with the ability to produce 2-hydroxyglutarate. Together, these data demonstrate that neomorphic IDH2 mutations can be oncogenic in mesenchymal cells
    • 

    corecore