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Current challenges in subgroups of high‑grade 
pediatric brain tumors

According to the most recent reports published in 2014, 
one in every 285 children will be diagnosed with can-
cer before the age of 20  years [73]. Overall survival has 
improved substantially over the last three decades for spe-
cific cancer types, mainly childhood leukemia, partly based 
on better stratification of patients using molecular tools. 
In contrast, a subset of tumors remains incurable today 
and includes subgroups of brain tumors, a leading cause 
of cancer-related morbidity and mortality in the pediatric 
years. Several impediments to effective treatment exist and 
hamper the design and outcome of needed novel clinical 
trials. Diagnosis still relies mainly on standard pathology 
that characterizes tumors according to the World Health 
Organization (WHO) classification. Tumors are classified 
according to their presumed cell of origin and then are 
further divided into distinct histological grades, ranging 
from WHO grade I to WHO grade IV based on cytologic 
and histologic features (Fig. 1). Moreover, these tumors are 
often studied and treated as if they were analogous to adult 
tumors. However, pediatric brain tumors of most patho-
logical types appear to harbor unique molecular alterations 
compared to these very same tumors occurring in the adult 
years, although under the microscope they are indistin-
guishable [18, 20, 50, 56, 63, 66]. Indeed, we and others 
have shown that they represent unique molecular entities 
and may require distinct therapeutic approaches [1, 2, 11, 
18, 23, 26, 27, 30, 31, 50, 58, 69]. Supporting this is the 
predilection for pediatric and adult tumors to occur in dif-
ferent brain regions, with tumors arising in particular areas 
harboring distinct genetic alterations [63, 66, 75]. Last but 
not least, in the context of high-grade tumors, recent work 
enabled by next-generation sequencing (NGS) technologies 
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has begun to point us in the direction of the epigenome 
as a major driver of cancer development [63, 75]. Recent 
findings from several groups including ours point to the 
epigenome as a previously under-appreciated hallmark of 
oncogenesis that drives several groups of intractable high-
grade pediatric brain tumors. These mutations directly 
affect histone genes, the core component of chromatin, or 
post-translational modifications affecting specific residues 
within the histone tail as well as enzymes mediating DNA 
methylation. Consequently, better stratification of patients 
based on tumor biology, improved identification of relevant 
therapeutic targets, and the design of experimental mod-
els to test compounds affecting specific genetic/molecular 
drivers are essential for therapeutic breakthroughs in these 
deadly diseases. Moreover, epigenetic alterations observed 
in high-grade pediatric brain tumors result in a previously 
unforeseen homogeneity within tumors and across tumors 
sharing the same mutational spectrum. This leads us to 
raise the concept of “epigenetic addiction” that will be 
further elaborated herein using pediatric high-grade astro-
cytomas and a subgroup of embryonal brain tumors as 
examples.

High‑grade pediatric and young adult astrocytomas: an 
epigenetic defect of the developing brain?

Astrocytomas fall under the larger classification of gliomas, 
which include ependymomas, oligodendrogliomas and 
mixed oligoastrocytomas that are more characteristic of the 
adult years [45]. They are the most common subgroup of 

brain tumor across age and are themselves comprised of 
four histological grades, I–II commonly termed low-grade 
tumors, and III-IV, termed as high-grade tumors [38, 45]. 
High-grade astrocytomas (HGAs) include grade IV astro-
cytoma (glioblastoma, GBM) and are particularly lethal 
and disabling brain neoplasms, with barely 10  % of chil-
dren and young adults surviving 3 years after their diagno-
sis. Adult GBM occurring de novo (primary GBM) consti-
tutes the large majority of HGA across the lifespan (90 % 
of all HGA (Fig.  2)). The Cancer Genome Atlas project 
(TCGA) revealed adult HGA to be highly heterogeneous 
with numerous mutations and copy number changes within 
tumors and across tumors sharing similar gene expression 
profiles [8, 12, 52, 72]. However, in younger patients where 
a stepwise disease is often identified and leads to secondary 
GBM, this consortium identified the crucial role for IDH 
metabolic pathways in the genesis of the tumors [7, 12, 52, 
54, 72, 78] (Fig. 2). Indeed, recurrent somatic IDH1 and 2 
mutations are found in the vast majority of grade II and III 
young adult gliomas and secondary GBM [54, 78]. These 
mutations are extremely rarely present in primary de novo 
GBM [54, 78] and when they do arise, patients are usually 
young adults aged <25 years [57]). These gain-of-function, 
heterozygous mutations are initiating events [54, 72, 74] 
and are associated with two mutually exclusive genetic 
alterations, TP53 mutations and 1p19q co-deletions [6, 
53] that, respectively, characterize astrocytic and oligoden-
droglial IDH-mutant gliomas. IDH mutations induce the 
production of high quantities of 2-hydroxyglutarate [15]. 
This onco-metabolite affects chromatin structure through 
alteration of histone post-translational modifications and 

Fig. 1   Central nervous system 
cellular development and tumo-
rigenesis. Graphic depiction 
showing differentiation of neu-
ral stem cells into neuronal and 
glial differentiation pathways 
and subsequent tumorigenesis 
from presumed cells of origin. 
CNS Central nervous system, 
PNET primitive neuroecto-
dermal tumor, AT/RT atypi-
cal teratoid/rhabdoid tumor, 
ETMR embryonal tumor with 
multilayered rosettes, ETANTR 
embryonal tumor with abundant 
neuropil and true rosettes
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global DNA methylation. It competitively inhibits TET-
mediated DNA demethylation, resulting in DNA hyper-
methylation and the glioma-CpG island methylator pheno-
type (G-CIMP) [52, 68] and impairs histone demethylases 
[46]. Most strikingly, in children, studies by our group and 
others have uncovered recurrent mutations directly affect-
ing histone 3 variants at critical residues in pediatric HGA 
[63, 75]. These studies were the first to identify mutations 
in regulatory histones to be directly associated with human 
disease. These mutations were observed in histone 3 genes 
encoding both non-canonical histone (H3.3) and canoni-
cal (H3.1) variants. Interestingly, analogous p.Lys27 Met 
(K27M) mutations were observed in both of these two vari-
ants, with mutually exclusive p.Gly34Arg/Val (G34R/V) 
seen only in H3.3 thus far [63, 75]. These mutations are the 
pediatric counterpart of the recurrent IDH mutations [54, 
78], with which they are also mutually exclusive. Similar to 
IDH, they require association with additional mutations in 
a specific set of genes that will differ based on the mutated 
histone variant, age of the patient and the brain location 
to give rise to HGAs in different anatomic compartments 
[37, 66]. Importantly, mutations leading to aberrant his-
tone post-translational modifications of two H3 marks, 
Lysine (K) 27 and K36 appear to be central to the biology 

of high-grade gliomas in two different neuroanatomical 
compartments. Mutations affecting H3K27 methylation 
seem specific to tumors of the midline, encompassing brain 
regions such as the thalamus, the brainstem (pons), spi-
nal cord and cerebellum. Conversely, mutations affecting 
H3K36 methylation are prevalent in tumors of the cerebral 
hemispheres and the genes responsible for these alterations, 
their accompanying partner mutations, as well as what is 
known of the downstream effects will be discussed herein.

Defects in H3K27 at the core of midline and hindbrain 
tumorigenesis

NGS studies have uncovered a prevalence of H3.3 and 
H3.1 K27M mutations in HGA tumors arising in regions 
along the neuroanatomical midline and hindbrain [37, 63, 
66, 75]. These include diffuse intrinsic pontine glioma 
(DIPG, HGA occurring in the pons), cerebellar, spinal and 
thalamic HGA, which are notoriously difficult areas for 
surgical resection and stereotactic biopsy. Recently, four 
concurrent studies helped further shape the genomic land-
scape of midline HGA [9, 19, 67, 76]. K27M mutations 
arising in genes encoding the canonical histone H3.1 

Fig. 2   Molecular alterations identified in gliomas across the lifespan. 
Representation of molecular alterations observed in World Health 
Organization (WHO) grade I–IV astrocytomas and oligodendroglio-

mas across the age spectrum. Alterations highlighted in red text are 
shown to have an epigenetic/chromatin remodeling role. GBM Glio-
blastoma, DIPG diffuse intronsic pontine glioma
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(HIST1H3B or HIST1H3C) account for ~20  % of DIPG, 
and in a dataset of 40 midline HGA tumors, K27M muta-
tions across H3.3 and H3.1 were present in 93 % of tumors 
in the midline compartment [19, 75]. H3.1 K27M muta-
tions affect younger children (mean age of 3–5 years) and 
occur exclusively in the brainstem in conjunction with 
recurrent gain-of-function somatic mutations in the activin 
A receptor, type I (ACVR1). The mutated amino acid resi-
dues in ACVR1, which encodes a serine threonine kinase, 
ALK2, have previously been reported as germline muta-
tions causing fibrodysplasia ossificans progressiva (FOP), 
an inherited musculoskeletal disease [64]. They result in 
ligand-independent activation of the kinase leading to 
increase of bone morphogenetic protein (BMP) signaling 
and increased phospho-SMAD1/5/8 production in tissues 
[9, 19, 67, 76]. The lack of reported CNS tumor develop-
ment in FOP patients or Acvr1/Alk2 mouse models sug-
gests that aberrant activation of this pathway is not suffi-
cient for tumorigenesis [22]. ACVR1 mutations may act in 
concert with H3 K27M mutations and other associated 
alterations identified in the PI3K pathway to induce tumori-
genesis [19]. Interestingly, in rare cases, somatic-activating 
ACVR1 mutations are identified without association with 
H3 K27M mutations [76], inferring their importance in 
tumor formation, even though their exact role remains 
unknown. K27M in H3.3 occurs mainly in association with 
somatic loss-of-function genetic TP53 alterations [19, 63]. 
They represent the vast majority of pediatric midline HGA 
in the thalamus (80 %), cerebellum and spine (most tumors) 

or the pons (60 %) (Fig. 3). The recently uncovered hotspot 
mutations in the fibroblast growth factor receptor 1 
(FGFR1), leading to hyperactivity along the MAPK axis 
identified in PA, are also identified in a rare subset of pedi-
atric HGA of the thalamus and notably seem invariably 
associated with H3.3 K27M mutations [35]. In addition, 
DIPGs and HGA from other sites have previously been 
associated with activation of PDGFRA through genomic 
amplification or activating mutations [55, 79]. The gain-of-
function alterations in these three growth factor receptors, 
ACVR1, FGFR1 and PDGFRA, associate with H3 K27M 
variants in midline HGA and are not seen concurrently. 
ACVR1 and FGFR1 mutations are mutually exclusive with 
TP53 alterations and occur in specific locations within the 
midline of the brain (Fig. 3) [19]. K27M mutations appear 
to correlate with poorer overall survival [37]. A glimpse of 
the complexity that lies in exploring H3K27 mutations is 
suggested by their inherent nature to alter global levels of 
H3K27me3, even though in the case of H3.3K27M muta-
tions H3.3 is a minimal contributor to total histone H3 lev-
els [43]. Independent studies have reported global loss in 
H3K27me3 associated with K27M mutations in HGA (Fig. 
4) [10, 43, 71]. K27M appears to affect endogenous levels 
of H3K27me3 in human tumor samples, as well as decrease 
H3K27me3 levels when expressed ectopically (as H3.3 or 
H3.1 K27M) in a variety of cell types [10, 43]. Interest-
ingly, in tissue samples, this decrease in H3K27me3 is not 
associated with differences in the levels of EZH2 expres-
sion [71]. This phenomenon was explored directly by 

Fig. 3   Molecular subgroups of 
pediatric high-grade gliomas 
show neuroanatomical prefer-
ences. Schematic representation 
of a sagittal view of the human 
brain depicting neuroanatomical 
areas with observed altera-
tions discussed herein. Age of 
patients harboring these altera-
tions is represented at the right
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Lewis and colleagues utilizing in vitro histone methyltrans-
ferase assays in the presence of synthesized H3K27M pep-
tides that demonstrated that the K27M moiety was a potent 
inhibitor of EZH2 H3K27 tri- and di-methyltransferase 
activity [43]. Specific amino acid identities at the K27 posi-
tion are critical to the ability of mutated H3K27 to block 
EZH2 activity, with methionine (M27) and isoleucine (I27) 
substitutions demonstrating potent inhibition of the 
enzyme, hypothesized to result from hydrophobic interac-
tions with the EZH2 active site mediated by their side 
chains [43] (reviewed in [48]). Interestingly, although 
H3K27me3 levels are decreased in the presence of K27M 
mutations, Chan and colleagues demonstrate that there is a 
striking increase of H3K27me3 marks in association with 
sequences also marked by H3K4me3 [10]. These include 
so-called bivalent genes which are potentially poised for 
expression following removal of the repressive histone 
methyl mark at K27 [10]. One possible hypothesis is that 
these dually marked bivalent genes represent a gene signa-
ture specific to K27 mutant tumors. This is supported by 
their Gene Ontology (GO) analysis which suggests they 
represent genes with significance of cancer pathways as 
well as developmental pathways involved in pattern specifi-
cation and morphogenesis [10]. Future experimentation 
and modeling of individual genes and pathways aberrantly 
regulated in K27M-mutant tumors are necessary to deter-
mine the ones important in specifying tumorigenesis in 
midline brain regions, where these mutations arise. Intro-
ducing K27M expression specifically to various regions in 
mice, or in cell models derived from these regions of the 
brain, such as cortical, brainstem or cerebellar astrocytes or 
neural stem cells will potentially allow further insight into 
its oncogenic effect. These studies have been performed in 
the context of low-grade glioma biology studies of 
KIAA1549-BRAF fusion, which arises most commonly in 
pilocytic astrocytoma tumors of the cerebellum [34]. The 
introduction of the KIAA1549-BRAF fusion gene was 
shown to specifically alter growth in cerebellar neural stem 
cells [36]. Such effects may not be limited to developing or 
immature astrocytes or stem cells, as lentiviral introduction 
of specific oncogenes has been shown to lead to re-pro-
gramming and tumorigenesis of mature neurons and astro-
cytes [21]. Results demonstrating the global implication of 
K27M mutations and aberrant levels and distribution of 
H3K27me3 marks in pediatric brain tumors in specific 
regions further accentuate the core of this disease in the 
childhood years as epigenomic in nature (reviewed in [48, 
65]). Of importance, H3K27 methylation alterations do not 
seem to be limited to tumors of the astrocytic lineage, with 
pediatric medulloblastoma tumors, which are neuronal in 
origin and occur in the cerebellum, demonstrating H3K27 
post-translational modifications through increased EZH2 
expression or loss-of-function mutations in KDM6A, which 

encodes a H3K27me3-specific demethylase [17, 51, 59]. 
Further to this, recent reports of posterior fossa epend-
ymoma group A (PFA) tumors primarily affecting infants 
in the lateral cerebellum, demonstrate heavy involvement 
of epigenetic defects revolving around aberrantly regulated 
H3K27me3 rather than recurrent SNVs; a very unique find-
ing among cancers sequenced to date [47]. The question 
then becomes: why do tumors in these midline regions  
harbor K27M mutations and aberrant H3K27 methylation 
so frequently? What genes are de-regulated by these altera-
tions preferentially in cells of these areas that may contrib-
ute to tumorigenesis? Is aberrant H3K27 methylation, 
shown to be affected by H3.3 and H3.1 K27M mutations, 
central to tumorigenesis of these areas? If not what accom-
panying mutations/alterations are required in certain cases? 
Further experimentation and modeling of these mutations 
are absolutely essential to answering these questions.

Defects affecting H3K36 define a unique set of tumors 
with a variety of clinical and biologic parameters

G34R/V mutations in H3F3A were identified in a subset of 
pediatric GBM defined by a unique set of clinical param-
eters, namely an adolescent/young adult age group, cortical 
brain location and in consistent association with concurrent 
mutations in TP53, similar to IDH mutant astrocytomas, 
and in ATRX (α-thalassemia/mental retardation syndrome-
X-linked) [63], which encodes a subunit of a chromatin 
remodeling complex required for H3.3 incorporation at 
pericentric heterochromatin and telomeres [16, 42], in all 
cases initially identified [63]. In addition, G34R and G34V 
peptides were shown to decrease levels of H3K36me2/3 in 
mononucleosomes by mass spectrometric analyses (Fig. 
4) [43]. In similar fashion to findings following ChIP-Seq 
analysis of H3K27me3 marks in K27M-mutant cells [10], 
Bjerke et al. [5] demonstrate re-distribution or differential 
binding of H3K36me3 across the genome in a cell line har-
boring an H3.3 G34V mutation. Further to this, specific 
upregulation of MYCN is observed in this cell line and is 
suggested to be mediated through G34-mutant H3K36me3 
differential binding [5]. H3K36me3 is affected in tumors 
mutant for isocitrate dehydrogenase 1 (IDH1) indirectly 
through its newly acquired neomorphic enzyme activity 
enabling conversion of the normal product of oxidative 
decarboxylation of isocitrate, alpha-ketoglutarate (alpha-
KG), into 2-hydroxyglutarate (2-HG) [15, 46]. This muta-
tion, identified in a large proportion of secondary GBM 
and low-grade gliomas detailed above [54, 78], inhibits 
histone demethylases, including those acting on H3K36 
[46], as well as alpha-KG-dependent dioxygenases [77], 
has also been shown to be sufficient for establishment of 
the G-CIMP [52, 68]. Initially, gene expression analysis 
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demonstrated unique clustering of a group of adult GBM 
tumors defined by IDH1 mutation and proneural gene 
signatures with a better overall survival [72]. In addition, 
cohorts encompassing pediatric and adult GBM tumor 
samples demonstrated that IDH1-mutant GBMs formed a 
clinically and biologically distinct subgroup, with tumors 
largely occurring in cortical regions [66]. Recent condi-
tional knock-in mouse models of IDH1 mutation recapitu-
lated the aberrant histone marks present in overexpression 
models in cell culture [61]. Further exploration of whole-
exome sequencing (WES) datasets of pediatric high-
grade gliomas (HGGs) revealed a statistical enrichment 
of mutations in the H3K36 trimethyltransferase SETD2 in 
the pediatric subset compared to 543 non-cancer control 
exomes [20]. These mutations were associated with global 
decreases in H3K36me3 levels in HGGs harboring either 
missense or truncating mutations in SETD2, suggesting 
loss-of-function (Fig. 4) [20]. Loss-of-function mutations 

in SETD2 have been associated with renal cell carcinoma, 
breast cancer, and further confirmed in larger, independent 
TCGA GBM datasets [13, 14, 24, 49, 70]. Recently they 
have also been identified in acute leukemia associated with 
specific driver fusion genes [80]. In the context of pediat-
ric HGGs this is particularly significant, as for pediatric 
HGGs located in the cerebral hemispheres, approximately 
half of tumors demonstrate defects in H3K36 methylation 
acquired by mutations either in H3F3A (G34R/V), IDH1 
or SETD2 and seem to primarily affect adolescent/young 
adult patients [20, 66]. Future studies are needed to model 
H3K36 methylation defects as a specific pathway affected 
in cortical tumorigenesis where alterations affecting the 
H3K27 mark are rare.

A recent study identified recurrent H3.3 mutations 
in the vast majority of chondroblastoma and giant cell 
tumors of the bone, two tumors affecting soft tissues and 
younger patients (adolescents and young adults primarily) 

Fig. 4   Mutations in H3 and the epigenetic machinery in pediatric 
high-grade gliomas. Graphic representation of histones containing 
H3.1, encoded by HIST1H3B or HIST1H3C, and H3.3, encoded by 

H3F3A, variants and mutations affecting these variants in midline and 
cortical pediatric high-grade gliomas. Effects of these mutations on 
histone post-translational modifications are indicated
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[3]. H3F3B  K36M  mutations were identified in 68/77 of 
chrondroblastoma samples and  H3F3A  G34W mutations 
were identified in 48/53 giant cell tumors of bone (GCT); 
in addition to cases with rare variants  H3F3A  K36M or 
G34L in chondroblastoma or GCT respectively [3]. No 
additional genetic alterations were identified to be associ-
ated with these H3.3 mutations that appeared to be the sole 
drivers of these tumors. To date, these are the only group of 
tumors other than pediatric HGA where a histone gene is 
recurrently affected in cancer. They illustrate that the resi-
due and histone 3 isoform targeted is specific to age, tumor 
type and tumor location.

Mechanisms for telomere lengthening vary with age 
and tumor type

ATRX is a critical member of a multiprotein complex that 
includes DAXX and plays a role in regulating chromatin 
remodeling, nucleosome assembly, telomere maintenance 
and deposition of histone H3.3. The H3.3 chaperone HIRA 
loads H3.3 at active and repressed genes and at several 
transcription factor binding sites, while the ATRX–DAXX 
complex mediates H3.3 deposition in silent chromatin at 
telomeres, where the presence of H3.3 is correlated with the 
repression of telomeric RNA transcription, and near certain 
specific active genes [25]. Hypomorphic germline muta-
tions in ATRX lead to the α-thalassemia/mental retardation 
X-linked syndrome. Conversely, complete loss-of-function 
mutations have recently been identified in cancers, includ-
ing pancreatic neuroendocrine tumors (PanNETs), neuro-
blastoma and alpha-thalassemia myelodysplasia syndrome. 
We and others showed ATRX to be mutated in pediatric 
HGA [28, 63] and adult IDH-mutant astrocytomas [32, 44] 
and showed alternative lengthening of telomeres (ALT) to 
be associated with ATRX mutations [28, 63]. These muta-
tions are mutually exclusive with TERT promoter muta-
tions responsible for telomere elongation that seem to spec-
ify primary GBM and oligodendroglial IDH-CIC/FUBP1 
mutants (Fig. 2). Interestingly, younger patients with HGA, 
mainly patients with DIPG did not harbor TERT promoter 
mutations possibly reflecting age and the effect of the cell 
of origin [9, 19, 76].

DNA methylation and its role in pediatric brain 
tumorigenesis

In addition to histone code alterations observed in the pedi-
atric and young adult form of HGA, studies utilizing high-
density methylation arrays have revealed striking asso-
ciations between histone code alterations and global DNA 
methylation patterns. Sturm and colleagues identify six 

subgroups of GBM that vary in both clinical and mutational 
variables associated with individual methylation subgroups; 
three of which are delineated by mutations shown to affect 
the histone code, namely H3.3 K27M, H3.3 G34R/V and 
IDH1 R132-mutated tumors [66]. Additional subgroups are 
comprised largely of adult tumors with classical oncogenic 
alterations such as EGFR, PDGFRA amplification and mes-
enchymal profiles [66], suggesting that epigenomic dys-
regulation in the form of histone code alterations may be 
at the core of pediatric tumorigenesis specifically. Herein 
we have detailed the mutations and alterations leading to 
histone methylation defects in pediatric brain tumors, and 
have indicated that these are in addition, associated with 
novel DNA methylation patterns. Utilizing an adult glioma 
dataset, Noushmehr and colleagues [52] were able to sub-
group tumors via DNA methylation profiling and identify 
a prominent G-CIMP subgroup defined by IDH1 mutation, 
which was later shown as detailed above, to be sufficient to 
create this phenotype [68]. Expanding global DNA methyl-
ation analyses to incorporate a significant pediatric subset, 
H3.3 K27M, H3.3 G34R/V and IDH1 mutant tumors were 
shown to specifically map three epigenetic subgroups of 
GBM that were comprised largely of pediatric and young 
adult tumors [66]. As a technology to classify pediatric 
brain tumors, DNA methylation profiling constitutes quite 
a robust method, with recent reports demonstrating this 
for not only gliomas, but also medulloblastoma, pilocytic 
astrocytoma, ependymoma and primitive neuroectodermal 
tumors (PNETs) as well as embryonal tumors with multi-
layered rosettes (ETMRs) [4, 29, 39, 41, 47, 62]. Although 
in medulloblastoma, DNA methylation derived subgroup-
ing corresponds very well with subgrouping performed via 
gene expression microarrays [29], for GBM this has proven 
more difficult, with only supervised analyses demonstrating 
unique gene expression associated with the epigenetic sub-
groups defined by H3.3 K27M and G34R/V [63]. Bender 
and colleagues demonstrate however that H3K27me3 and 
DNA hypomethylation areas may lie at the core of gene 
expression programs driven by K27M mutations [4]. Their 
data also argue for caution in isogenic cell lines expressing 
H3.3 mutations, as these may not recapitulate H3K27me3 
and DNA methylation profiles present in human tumor tis-
sue [4]. Recent multidimensional studies of DIPG tumors 
confirmed a global landscape of DNA hypomethylation 
seen in K27M-mutant DIPG tumors, and showed distinct 
subgrouping of tumors with activated Hedgehog (Hh) or 
N-Myc (MYCN) seen by corroborative transcriptomic and 
proteomic studies [60]. Differences in DNA methylation 
profiles of DIPG tumors associated with MYCN activa-
tion were first shown as delineating one of three epigenetic 
subgroups across 28 DIPG samples analyzed by methyla-
tion arrays [9]. MYCN alterations occurred independently 
of H3 K27M and ACVR1 mutations, although only a small 
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sample size of MYCN-group tumors (n = 2) were included 
in methylation analysis necessitating future investigation 
of this MYCN subgroup [9]. Boot-strapping assessments of 
DNA methylation data of DIPG and other pediatric HGA 
tumors strongly suggest that K27M mutations across H3.3 
and H3.1 govern distinct epigenomic profiles [19]. Sub-
group-specific modeling of HGA and DIPG associated with 
these particular alterations presents a challenge and will 
undoubtedly represent a critical step forward in the study of 
this multifaceted group of diseases. Accurate recapitulation 
of the striking DNA methylation signatures we see robustly 
in tumors will form a driving force for progress in under-
standing the biology of individual subgroups of HGAs.

A recent example by our group in demonstrating the 
complex interplay between genomic alterations, DNA 
methylation and gene expression has resulted from the 
study of pediatric embryonal tumors (Fig. 1). While high-
grade astrocytomas are more rare in children, embryonal 
brain tumors are very specific to the pediatric years and are 
rarely, if ever, seen in adults. These are aggressive high-
grade malignant tumors and include medulloblastoma (neu-
ronal high-grade neoplasms in the cerebellum), primitive 
neuroectodermal tumors (PNETs), atypical teratoid/rhab-
doid tumors (ATRT) and a newly described variant embry-
onal tumor with multilayered rosettes (ETMR) [40, 45]. 
Recent re-classification of many diverse histological enti-
ties into ETMRs prompted a view into the molecular char-
acteristics underlying these aggressive tumors of the early 
pediatric years [40]. DNA methylation profiling revealed 
a very distinct global profile for a series of ETMRs when 
compared to a diverse set of gliomas, PNETs and other 
brain tumors [39]. RNA sequencing revealed a recurrent 
fusion between TTYH1 and the C19MC microRNA cluster, 
which is primate-specific [39]. When assessing significant 
genes up- or down-regulated in ETMRs specifically, a fetal-
specific isoform of the de novo DNA methyltransferase 
DNMT3B (isoform 1b) was shown to be increased spe-
cifically in ETMRs, notably when assessed across a large 
dataset of a variety of tumors [39]. This isoform is known 
to be uniquely expressed in early post-conceptional fetal 
brain and may underlie the unique cellular differentiation 
of ETMR tumors. Specific members of the C19MC clus-
ter were able to upregulate the 1b isoform associated with 
a decrease in retinoblastoma-like 2 (RBL2), a gene which 
regulates the expression of DNMT3B [39]. Taken together, 
these data point to a fusion between a gene and the C19MC 
cluster driving expression of the microRNA. This leads to 
subsequent downstream upregulation of a fetal isoform of a 
DNA methyltransferase, influencing the global epigenomic 
signature of ETMR tumors. Herein once more, data points 
to the epigenome as a potential driver for pediatric brain 
tumorigenesis. Defining the function of these unique meth-
ylation patterns across tumor subtypes will be important 

to understand how alterations in both the histone code and 
DNA methylation alter the genome in such a way as to 
directly mediate tumorigenesis, or act as a permissive envi-
ronment for transformation.

“Epigenetic addiction” in pediatric high‑grade brain 
tumors

Adult HGA is characterized by intra and inter-tumoral het-
erogeneity. Strikingly, our studies in pediatric HGA and 
ETMR unravel a previously unsuspected level of homoge-
neity within molecular subgroups of these tumors. Indeed, 
separate biopsies from H3 mutant HGA showed similar 
mutational profiles (including H3.3 K27M mutation) and 
close to identical global DNA methylation patterns, with 
heterogeneity seen largely for copy number variants in 
growth regulatory genes, such as PDGFRA amplification 
[19]. Moreover, recurrences following complete global 
resection of ETMR were identical for both these features 
in the cases where the primary and recurrent samples were 
available despite high-dose alkylating agents and/or radia-
tion therapy [39]. These results mirror recent findings in 
IDH-mutant glioma where IDH mutation is present uni-
versally, independent of grade or recurrence, whereas non-
IDH mutant gliomas showed strikingly different muta-
tional patterns at recurrence including growth regulatory 
gene mutations such as BRAF V600E [33]. Although fur-
ther experimentation focused on animal and cell modeling 
and inhibition of growth following blockade H3 K27M in 
mutant cells is required, these findings suggest that these 
tumors are “addicted” to specific forms of epigenetic dys-
regulation. To meet the criteria of oncogene addiction fur-
ther experimentation is needed; however, if proven correct, 
this offers an unprecedented therapeutic opportunity unique 
to pediatric brain tumors contrary to the landscape of com-
plex heterogeneity seen in epithelial and other cancers.

Summary

Recent work by our lab, other independent groups as well 
as large consortia including TCGA and the International 
Cancer Genome Consortium (ICGC) have shown epige-
netic defects to be present in a large proportion of pediatric 
brain tumors. They call for the advent of molecular pathol-
ogy, a needed change in the WHO classification to inte-
grate data that takes molecular defects into account when 
classifying/stratifying a brain tumor. As patients continue 
to consent to participation in sequencing and molecular 
studies, the research community will be able to continue to 
explore the novel epigenetic mechanisms at play underly-
ing their formation. Recent discoveries of histone variant 
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mutations at critical residues have placed defects leading 
to H3 deposition and post-translational modifications at 
the center of pediatric high-grade gliomagenesis. Future 
work modeling the impact of these mutations, the poten-
tial need for additional hits or associated mutations and 
the careful interpretation of the interplay between genomic 
and epigenomic data may allow us to reconcile major 
mechanisms ongoing in either dimension. Examples such 
as ETMR tumors support an integrated approach to study-
ing driving forces governing tumorigenesis. With such an 
approach, we hope to inform clinical trials with biomarker 
development and drug discovery fueled by molecular sub-
grouping of this deadly group of pediatric tumors. Uncov-
ering the untapped biology in this young field in pediatric 
brain tumors may aid in laying the foundation we need 
to tackle these tumors clinically to improve outcome for 
patients.
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