244 research outputs found

    Boundary Layer Behaviour in Circular EHL contacts in the Elastic-Piezoviscous Regime

    Get PDF
    The solution of elastohydrodynamically lubricated contacts at high loads and/or low speeds can be described as a Hertzian pressure with inlet and outlet boundary layers: zones where significant pressure flow occurs. For the soft lubrication regime (elastic-isoviscous), a self-similar solution exists in the boundary layers satisfying localized equations. In this paper, the boundary layer behaviour in the elastic-piezoviscous regime is investigated. The lengthscale of the boundary layers and the scaling of pressure and film thickness are expressed in non-dimensional parameters. The boundary layer width scales as 1/M−−√ (equivalent to λ¯3/8 ), the maximum pressure difference relative to the Hertzian solution as 1/M−−√3 (equivalent to λ¯1/4 ) and the film thickness as 1/M−−√16 (equivalent to λ¯3/64 ) with M the Moes non-dimensional load and λ¯ a dimensionless speed parameter. The Moes dimensionless lubricant parameter L was fixed. These scalings differ from the isoviscous-elastic (soft lubrication) regime. With increasing load (decreasing speed), the solution exhibits an increasing degree of rotational symmetry. The pressure varies less than 10 % over an angle less than 45 degrees from the lubricant entrainment direction. The results provide additional fundamental understanding of the nature of elastohydrodynamic lubrication and give physical rationale to the finding of roughness deformation depending on the “inlet length”. The findings may contribute to more efficient numerical solutions and to improved semi-analytical prediction methods for engineering based on physically correct asymptotic behaviour

    Senile Systemic Amyloidosis: Clinical Features at Presentation and Outcome

    Get PDF
    Background Cardiac amyloidosis is a fatal disease whose prognosis and treatment rely on identification of the amyloid type. In our aging population transthyretin amyloidosis (ATTRwt) is common and must be differentiated from other amyloid types. We report the clinical presentation, natural history, and prognostic features of ATTRwt compared with cardiac‐isolated AL amyloidosis and calculate the probability of disease diagnosis of ATTRwt from baseline factors. Methods and Results All patients with biopsy‐proven ATTRwt (102 cases) and isolated cardiac AL (36 cases) seen from 2002 to 2011 at the UK National Amyloidosis Center were included. Median survival from the onset of symptoms was 6.07 years in the ATTRwt group and 1.7 years in the AL group. Positive troponin, a pacemaker, and increasing New York Heart Association (NYHA) class were associated with worse survival in ATTRwt patients on univariate analysis. All patients with isolated cardiac AL and 24.1% of patients with ATTRwt had evidence of a plasma cell dyscrasia. Older age and lower N‐terminal pro‐B‐type natriuretic peptide (NT pro‐BNP) were factors significantly associated with ATTRwt. Patients aged 70 years and younger with an NT pro‐BNP <183 pmol/L were more likely to have ATTRwt, as were patients older than 70 years with an NT pro‐BNP <1420 pmol/L. Conclusions Factors at baseline associated with a worse outcome in ATTRwt are positive troponin T, a pacemaker, and NYHA class IV symptoms. The age of the patient at diagnosis and NT pro‐BNP level can aid in distinguishing ATTRwt from AL amyloidosis

    Design of experiment (DoE)-driven in vitro and in vivo uptake studies of exosomes for pancreatic cancer delivery enabled by copper-free click chemistry-based labelling

    Get PDF
    Exosomes (Exo)-based therapy holds promise for treatment of lethal pancreatic cancer (PC). Limited understanding of key factors affecting Exo uptake in PC cells restricts better design of Exo-based therapy. This work aims to study the uptake properties of different Exo by PC cells. Exo from pancreatic carcinoma, melanoma and non-cancer cell lines were isolated and characterised for yield, size, morphology and exosomal marker expression. Isolated Exo were fluorescently labelled using a novel in-house developed method based on copper-free click chemistry to enable intracellular tracking and uptake quantification in cells. Important factors influencing Exo uptake were initially predicted by Design of Experiments (DoE) approach to facilitate subsequent actual experimental investigations. Uptake of all Exo types by PC cells (PANC-1) showed time- and dose-dependence as predicted by the DoE model. PANC-1 cell-derived exosomes (PANC-1 Exo) showed significantly higher uptake in PANC-1 cells than that of other Exo types at the longest incubation time and highest Exo dose. In vivo biodistribution studies in subcutaneous tumour-bearing mice similarly showed favoured accumulation of PANC-1 Exo in self-tissue (i.e. PANC-1 tumour mass) over the more vascularised melanoma (B16-F10) tumours, suggesting intrinsic tropism of PC-derived Exo for their parent cells. This study provides a simple, universal and reliable surface modification approach via click chemistry for in vitro and in vivo exosome uptake studies and can serve as a basis for a rationalised design approach for pre-clinical Exo cancer therapies

    Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations

    Get PDF
    The hypothalamic suprachiasmatic (SCN) clock contains several neurochemically defined cell groups that contribute to the genesis of circadian rhythms. Using cell-specific and genetically targeted approaches we have confirmed an indispensable role for vasoactive intestinal polypeptide-expressing SCN (SCN(VIP)) neurons, including their molecular clock, in generating the mammalian locomotor activity (LMA) circadian rhythm. Optogenetic-assisted circuit mapping revealed functional, di-synaptic connectivity between SCN(VIP) neurons and dorsomedial hypothalamic neurons, providing a circuit substrate by which SCN(VIP) neurons may regulate LMA rhythms. In vivo photometry revealed that while SCN(VIP) neurons are acutely responsive to light, their activity is otherwise behavioral state invariant. Single-nuclei RNA-sequencing revealed that SCN(VIP) neurons comprise two transcriptionally distinct subtypes, including putative pacemaker and non-pacemaker populations. Altogether, our work establishes necessity of SCN(VIP) neurons for the LMA circadian rhythm, elucidates organization of circadian outflow from and modulatory input to SCN(VIP) cells, and demonstrates a subpopulation-level molecular heterogeneity that suggests distinct functions for specific SCN(VIP) subtypes

    A Resource Aware MapReduce Based Parallel SVM for Large Scale Image Classifications

    Get PDF
    Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them support vector machines (SVMs) are used extensively due to their generalization properties. However, SVM training is notably a computationally intensive process especially when the training dataset is large. This paper presents RASMO, a resource aware MapReduce based parallel SVM algorithm for large scale image classifications which partitions the training data set into smaller subsets and optimizes SVM training in parallel using a cluster of computers. A genetic algorithm based load balancing scheme is designed to optimize the performance of RASMO in heterogeneous computing environments. RASMO is evaluated in both experimental and simulation environments. The results show that the parallel SVM algorithm reduces the training time significantly compared with the sequential SMO algorithm while maintaining a high level of accuracy in classifications.National Basic Research Program (973) of China under Grant 2014CB34040
    corecore