2 research outputs found

    Small intestine vs. colon ecology and physiology: Why it matters in probiotic administration

    Get PDF
    Research on gut microbiota has generally focused on fecal samples, representing luminal content of the large intestine. However, nutrient uptake is restricted to the small intestine. Abundant immune cell populations at this anatomical site combined with diminished mucus secretion and looser junctions (partly to allow for more efficient fluid and nutrient absorption) also results in intimate host-microbe interactions despite more rapid transit. It is thus crucial to dissect key differences in both ecology and physiology between small and large intestine to better leverage the immense potential of human gut microbiota imprinting, including probiotic engraftment at biological sensible niches. Here, we provide a detailed review unfolding how the physiological and anatomical differences between the small and large intestine affect gut microbiota composition, function, and plasticity. This information is key to understanding how gut microbiota manipulation, including probiotic administration, may strain-dependently transform host-microbe interactions at defined locations

    Perspective: A Legal and Nutritional Perspective on the Introduction of Quinoa-Based Infant and Follow-on Formula in the EU

    No full text
    Infants are vulnerable consumers and highly depend on dietary proteins for growth and development during their first months of life. Infant formula (IF) and follow-on formula (FOF) have been developed to meet these requirements, although few protein sources are currently allowed to be used. At the same time, allergies to these available protein sources are becoming more frequent. There is thus a need to explore alternative protein sources for infant nutrition. One alternative could be quinoa, which is a pseudocereal that is naturally free from gluten and has a high protein content and quality. This review assessed the composition, nutritional properties, and applicability of quinoa proteins for IF and FOF as well as the legal framework for their use in the European Union (EU). The protein quality of isolated quinoa proteins (IQPs) is relatively high compared with other plant-based proteins like rice. Besides, during the protein isolation process, unfavorable compounds are mostly removed, ensuring that the final product can comply with the maximum residue concentrations allowed. Overall, IF and FOF are strictly regulated under the Foods for Specific Groups (FSG) Regulation (EU) No 609/2013 and more research is needed before the introduction of IQP in such products is considered, but this review shows it has several promising features that warrant further investigation
    corecore