4 research outputs found

    Higher order constitutive relations and interface conditions for metamaterials with strong spatial dispersion

    Get PDF
    To characterize electromagnetic metamaterials at the level of an effective medium, nonlocal constitutive relations are required. In the most general sense, this is feasible using a response function that is convolved with the electric field to express the electric displacement field. Even though this is a neat concept, it bears little practical use. Therefore, frequently the response function is approximated using a polynomial function. While in the past explicit constitutive relations were derived that considered only some lowest order terms, we develop here a general framework that considers an arbitrary higher number of terms. It constitutes, therefore, the best possible approximation to the initially considered response function. The reason for the previously self-imposed restriction to only a few lowest order terms in the expansion has been the unavailability of the necessary interface conditions with which these nonlocal constitutive relations have to be equipped. Otherwise one could not make practical use of them. Therefore, besides the introduction of such higher order nonlocal constitutive relations, it is at the heart of contribution to derive the necessary interface conditions to pave the way for the practical use of these advanced material laws

    On the physical significance of non-local material parameters in optical metamaterials

    Get PDF
    When light interacts with a material made from subwavelength periodically arranged constituents, non-local effects can emerge. They occur because of either a complicated response of the constituents or possible lattice interactions. In lowest-order approximations of a general non-local response function, phenomena like an artificial magnetism and a bi-anisotropic response emerge. However, investigations beyond these lowest-order descriptions of non-local effects are needed for optical metamaterials (MMs) where a significant long-range interaction becomes evident. This highlights the need for additional material parameters to account for spatial non-locality in an effective medium description. These material parameters emerge from a Taylor expansion of the general and exact non-local response function. Even though these non-local parameters improve the effective description, their physical significance is yet to be understood. To improve the situation, we consider a conceptional MM consisting of scatterers characterized by a prescribed multipolar response arranged on a square lattice. Lorentzian polarizabilities describe the scatterers in the electric dipolar, electric quadrupolar, and magnetic dipolar terms. A slab of such a MM is homogenized while considering an increasing number of non-local terms in the constitutive relations at the effective level. We show that the effective permittivity and permeability are linked to the electric and magnetic dipole moments of the scatterers. The non-local material parameters are related to the higher-order multipolar moments and their interaction with the dipolar terms. Studying the effective material parameters with the knowledge of the induced multipolar moments in the lattice facilitates our understanding of the significance of each material parameter. Our insights aid in deciding on the order to truncate the Taylor expansion of the considered constitutive relations for a given MM

    Lower limits for the homogenization of periodic metamaterials made from electric dipolar scatterers

    Get PDF
    Nonlocal constitutive relations promise to homogenize metamaterials even though the ratio of period over operational wavelength is not much smaller than unity. However, this ability has not yet been verified, as frequently only discrete structures were considered. This denies a systematic variation of the relevant ratio. Here, we explore, using the example of an electric dipolar lattice, the superiority of the nonlocal over local constitutive relation to homogenize metamaterials when the period tends to be comparable to the wavelength. Moreover, we observe a breakdown of the ability to homogenize the metamaterial at shorter lattice constants. This surprising failure occurs when energy is transported across the lattice thanks to a well-pronounced near-field interaction among the particles forming the lattice. Contrary to common wisdom, this suggests that the period should not just be much smaller than the operational wavelength to homogenize a metamaterial, but, for a given size of the inclusion, there is an optimal period

    A T‐Matrix Based Approach to Homogenize Artificial Materials

    Get PDF
    The accurate and efficient computation of the electromagnetic response of objects made from artificial materials is crucial for designing photonic functionalities and interpreting experiments. Advanced fabrication techniques can nowadays produce new materials as 3D lattices of scattering unit cells. Computing the response of objects of arbitrary shape made from such materials is typically computationally prohibitive unless an effective homogeneous medium approximates the discrete material. In here, a homogenization method based on the effective transition (T-)matrix, TeffT_{eff} is introduced. Such a matrix captures the exact response of the discrete material, is determined by the T-matrix of the isolated unit cell and the material lattice vectors, and is free of spatial dispersion. The truncation of TeffT_{eff} to dipolar order determines the common bi-anisotropic constitutive relations. When combined with quantum-chemical and Maxwell solvers, the method allows one to compute the response of arbitrarily-shaped volumetric patchworks of structured molecular materials and metamaterials
    corecore