38 research outputs found

    Potential of Aegilops sp. for Improvement of Grain Processing and Nutritional Quality in Wheat (Triticum aestivum)

    Get PDF
    Wheat is one of the most important staple crops in the world and good source of calories and nutrition. Its flour and dough have unique physical properties and can be processed to make unique products like bread, cakes, biscuits, pasta, noodles etc., which is not possible from other staple crops. Due to domestication, the genetic variability of the genes coding for different economically important traits in wheat is narrow. This genetic variability can be increased by utilizing its wild relatives. Its closest relative, genus Aegilops can be an important source of new alleles. Aegilops has played a very important role in evolution of tetraploid and hexaploid wheat. It consists of 22 species with C, D, M, N, S, T and U genomes with high allelic diversity relative to wheat. Its utilization for wheat improvement for various abiotic and biotic stresses has been reported by various scientific publications. Here in, for the first time, we review the potential of Aegilops for improvement of processing and nutritional traits in wheat. Among processing quality related gluten proteins; high molecular weight glutenins (HMW GS), being easiest to study have been explored in highest number of accessions or lines i.e., 681 belonging to 13 species and selected ones like Ae. searsii, Ae. geniculata and Ae. longissima have been linked with improved bread making quality of wheat. Gliadins and low molecular weight glutenins (LMW GS) have also been extensively explored for wheat improvement and Ae. umbellulata specific LMW GS have been linked with wheat bread making quality improvement. Aegilops has been explored for seed texture diversity and proteins like puroindolins (Pin) and grain softness proteins (GSP). For nutrition quality improvement, it has been screened for essential micronutrients like Fe, Zn, phytochemicals like carotenoids and dietary fibers like arabinoxylan and β-glucan. Ae. kotschyi and Ae. biuncialis transfer in wheat have been associated with higher Fe, Zn content. In this article we have tried to compile information available on exploration of nutritional and processing quality related traits in Aegilops section and their utilization for wheat improvement by different approaches

    Role of in vitro two-dimensional (2D) and three-dimensional (3D) cell culture systems for ADME-Tox screening in drug discovery and development: a comprehensive review

    Get PDF
    Drug discovery and development have become a very time-consuming and expensive process. Preclinical animal models have become the gold standard for studying drug pharmacokinetic and toxicity parameters. However, the involvement of a huge number of animal subjects and inter-species pathophysiological variations between animals and humans has provoked a lot of debate, particularly because of ethical concerns. Although many efforts are being established by biotech and pharmaceutical companies for screening new chemical entities in vitro before preclinical trials, failures during clinical trials are still involved. Currently, a large number of two- dimensional (2D) in vitro assays have been developed and are being developed by researchers for the screening of compounds. Although these assays are helpful in screening a huge library of compounds and have shown perception, there is a significant lack in predicting human Absorption, Distribution, Metabolism, Excretion and Toxicology (ADME-Tox). As a result, these assays cannot completely replace animal models. The recent inventions in three-dimensional (3D) cell culture-based assays like organoids and micro-physiological systems have shown great potential alternative tools for predicting the compound pharmacokinetic and pharmacodynamic fate in humans. In this comprehensive review, we have summarized some of the most commonly used 2D in vitro assays and emphasized the achievements in next-generation 3D cell culture-based systems for predicting the compound ADME-Tox

    A null allele of granule bound starch synthase (Wx-B1) may be one of the major genes controlling chapatti softness.

    No full text
    Chapatti (unleavened flatbread) is a staple food in northern India and neighboring countries but the genetics behind its processing quality are poorly understood. To understand the genes determining chapatti quality, differentially expressed genes were selected from microarray data of contrasting chapatti cultivars. From the gene and trait association studies, a null allele of granule bound starch synthase (GBSS; Wx-B1) was found to be associated with low amylose content and good chapatti quality. For validation, near-isogenic lines (NILs) of this allele were created by marker assisted backcross (MAB) breeding. Background screening indicated 88.2 to 96.7% background recovery in 16 selected BC3F5 NILs. Processing quality and sensory evaluation of selected NILs indicated improvement in chapatti making quality. Traits that showed improvement were mouthfeel, tearing strength and softness indicating that the Wx-B1 may be one of the major genes controlling chapatti softness

    Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World

    No full text
    Biofortification is an upcoming, promising, cost-effective, and sustainable technique of delivering micronutrients to a population that has limited access to diverse diets and other micronutrient interventions. Unfortunately, major food crops are poor sources of micronutrients required for normal human growth. The manuscript deals in all aspects of crop biofortification which includes—breeding, agronomy, and genetic modification. It tries to summarize all the biofortification research that has been conducted on different crops. Success stories of biofortification include lysine and tryptophan rich quality protein maize (World food prize 2000), Vitamin A rich orange sweet potato (World food prize 2016); generated by crop breeding, oleic acid, and stearidonic acid soybean enrichment; through genetic transformation and selenium, iodine, and zinc supplementation. The biofortified food crops, especially cereals, legumes, vegetables, and fruits, are providing sufficient levels of micronutrients to targeted populations. Although a greater emphasis is being laid on transgenic research, the success rate and acceptability of breeding is much higher. Besides the challenges biofortified crops hold a bright future to address the malnutrition challenge

    Influence of Biofortified Colored Wheats (Purple, Blue, Black) on Physicochemical, Antioxidant and Sensory Characteristics of Chapatti (Indian Flatbread)

    No full text
    Biofortified colored wheat (black, blue, and purple) is rich in anthocyanins and phenolic acid compounds that impart positive physiological effects in humans. A large proportion of wheat is consumed in the form of Chapatti in Asian countries. The effect of chapatti cooking on the proximate composition, bioactive compounds (anthocyanins and phenolics), and antioxidant activities of these wheat varieties were checked in this study. Apart from acceptable sensory parameters, good taste, and soft texture of chapatti, biofortified colored wheat chapatti and flour had higher dietary fibers, protein content, and lower carbohydrate content. Higher soluble and insoluble phenolic compounds, anthocyanin content, and antioxidant activity were in the order of black > blue > purple > white. Chapatti making has reduced their antioxidant activity and anthocyanin content in comparison to flour. Moreover, the reduction in antioxidant activity is less as compared to the decrease in anthocyanin content. Our results suggest that colored wheat can be a better alternative to normal wheat for preparing chapatti as it would have additional health-promoting activities

    Soft and Hard Textured Wheat Differ in Starch Properties as Indicated by Trimodal Distribution, Morphology, Thermal and Crystalline Properties.

    No full text
    Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch composition also

    Rapid Development and Characterization of Chromosome Specific Translocation Line of Thinopyrum elongatum with Improved Dough Strength

    No full text
    The protein content and its type are principal factors affecting wheat (Triticum aestivum) end product quality. Among the wheat proteins, glutenin proteins, especially, high molecular weight glutenin subunits (HMW-GS) are major determinants of processing quality. Wheat and its primary gene pool have limited variation in terms of HMW-GS alleles. Wild relatives of wheat are an important source of genetic variation. For improvement of wheat processing quality its wild relative Thinopyrum elongatum with significant potential was utilized. An attempt was made to replace Th. elongatum chromosome long arm (1EL) carrying HMW-GS genes related to high dough strength with chromosome 1AL of wheat with least or negative effect on dough strength while retaining the chromosomes 1DL and 1BL with a positive effect on bread making quality. To create chromosome specific translocation line [1EL(1AS)], double monosomic of chromosomes 1E and 1A were created and further crossed with different cultivars and homoeologous pairing suppressor mutant line PhI. The primary selection was based upon glutenin and gliadin protein profiles, followed by sequential genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH). These steps significantly reduced time, efforts, and economic cost in the generation of translocation line. In order to assess the effect of translocation on wheat quality, background recovery was carried out by backcrossing with recurrent parent for several generations and then selfing while selecting in each generation. Good recovery of parent background indicated the development of almost near isogenic line (NIL). Morphologically also translocation line was similar to recipient cultivar N61 that was further confirmed by seed storage protein profiles, RP-HPLC and scanning electron microscopy. The processing quality characteristics of translocation line (BC4F6) indicated significant improvement in the gluten performance index (GPI), dough mixing properties, dough strength, and extensibility. Our work aims to address the challenge of limited genetic diversity especially at chromosome 1A HMW-GS locus. We report successful development of chromosome 1A specific translocation line of Th. elongatum in wheat with improved dough strength

    Anthocyanin bio-fortified colored wheat: Nutritional and functional characterization

    Get PDF
    <div><p>Colored wheat, rich in anthocyanins, has created interest among the breeders and baking industry. This study was aimed at understanding the nutritional and product making potential of our advanced, high yielding and regionally adapted colored wheat lines. Our results indicated that our advanced colored wheat lines exhibited higher anthocyanin content and antioxidant activity than donor wheat lines and it varied in the order of white</p></div

    Anthocyanin bio-fortified colored wheat: Nutritional and functional characterization

    No full text
    <div><p>Colored wheat, rich in anthocyanins, has created interest among the breeders and baking industry. This study was aimed at understanding the nutritional and product making potential of our advanced, high yielding and regionally adapted colored wheat lines. Our results indicated that our advanced colored wheat lines exhibited higher anthocyanin content and antioxidant activity than donor wheat lines and it varied in the order of white</p></div
    corecore