4,937 research outputs found

    Untitled

    Get PDF

    DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs

    Full text link
    We present a novel deep learning architecture for fusing static multi-exposure images. Current multi-exposure fusion (MEF) approaches use hand-crafted features to fuse input sequence. However, the weak hand-crafted representations are not robust to varying input conditions. Moreover, they perform poorly for extreme exposure image pairs. Thus, it is highly desirable to have a method that is robust to varying input conditions and capable of handling extreme exposure without artifacts. Deep representations have known to be robust to input conditions and have shown phenomenal performance in a supervised setting. However, the stumbling block in using deep learning for MEF was the lack of sufficient training data and an oracle to provide the ground-truth for supervision. To address the above issues, we have gathered a large dataset of multi-exposure image stacks for training and to circumvent the need for ground truth images, we propose an unsupervised deep learning framework for MEF utilizing a no-reference quality metric as loss function. The proposed approach uses a novel CNN architecture trained to learn the fusion operation without reference ground truth image. The model fuses a set of common low level features extracted from each image to generate artifact-free perceptually pleasing results. We perform extensive quantitative and qualitative evaluation and show that the proposed technique outperforms existing state-of-the-art approaches for a variety of natural images.Comment: ICCV 201

    Bidimensionality and EPTAS

    Full text link
    Bidimensionality theory is a powerful framework for the development of metaalgorithmic techniques. It was introduced by Demaine et al. as a tool to obtain sub-exponential time parameterized algorithms for problems on H-minor free graphs. Demaine and Hajiaghayi extended the theory to obtain PTASs for bidimensional problems, and subsequently improved these results to EPTASs. Fomin et. al related the theory to the existence of linear kernels for parameterized problems. In this paper we revisit bidimensionality theory from the perspective of approximation algorithms and redesign the framework for obtaining EPTASs to be more powerful, easier to apply and easier to understand. Two of the most widely used approaches to obtain PTASs on planar graphs are the Lipton-Tarjan separator based approach, and Baker's approach. Demaine and Hajiaghayi strengthened both approaches using bidimensionality and obtained EPTASs for a multitude of problems. We unify the two strenghtened approaches to combine the best of both worlds. At the heart of our framework is a decomposition lemma which states that for "most" bidimensional problems, there is a polynomial time algorithm which given an H-minor-free graph G as input and an e > 0 outputs a vertex set X of size e * OPT such that the treewidth of G n X is f(e). Here, OPT is the objective function value of the problem in question and f is a function depending only on e. This allows us to obtain EPTASs on (apex)-minor-free graphs for all problems covered by the previous framework, as well as for a wide range of packing problems, partial covering problems and problems that are neither closed under taking minors, nor contractions. To the best of our knowledge for many of these problems including cycle packing, vertex-h-packing, maximum leaf spanning tree, and partial r-dominating set no EPTASs on planar graphs were previously known

    Case Study 3: Exploring open educational resources for informal learning

    Get PDF
    This chapter explores the potential of informal learning within a Personal Learning Environment (PLE), as well as the identified informal learning cultures that have evolved from the use of Open Educational Resources (OER). A variety of research instruments and strategies have been employed to promote the use of PLEs in this case study and capture a rich variety of feedback from Communities of Practice. In particular, there is a focus on the active use of a PLE and its integration with OER available from the OpenLearn project of the Open University. Additionally, this chapter describes the discovered necessary guidance conditions, emergent contrasting learning contexts and evolving different scenarios in use within the selected Communities of Practice. This research has led to the identification of valuable lessons as well as the documentation of challenges that are faced by those using PLEs in the context of informal learning scenarios

    Beyond Bidimensionality: Parameterized Subexponential Algorithms on Directed Graphs

    Get PDF
    We develop two different methods to achieve subexponential time parameterized algorithms for problems on sparse directed graphs. We exemplify our approaches with two well studied problems. For the first problem, {\sc kk-Leaf Out-Branching}, which is to find an oriented spanning tree with at least kk leaves, we obtain an algorithm solving the problem in time 2O(klogk)n+nO(1)2^{O(\sqrt{k} \log k)} n+ n^{O(1)} on directed graphs whose underlying undirected graph excludes some fixed graph HH as a minor. For the special case when the input directed graph is planar, the running time can be improved to 2O(k)n+nO(1)2^{O(\sqrt{k})}n + n^{O(1)}. The second example is a generalization of the {\sc Directed Hamiltonian Path} problem, namely {\sc kk-Internal Out-Branching}, which is to find an oriented spanning tree with at least kk internal vertices. We obtain an algorithm solving the problem in time 2O(klogk)+nO(1)2^{O(\sqrt{k} \log k)} + n^{O(1)} on directed graphs whose underlying undirected graph excludes some fixed apex graph HH as a minor. Finally, we observe that for any ϵ>0\epsilon>0, the {\sc kk-Directed Path} problem is solvable in time O((1+ϵ)knf(ϵ))O((1+\epsilon)^k n^{f(\epsilon)}), where ff is some function of \ve. Our methods are based on non-trivial combinations of obstruction theorems for undirected graphs, kernelization, problem specific combinatorial structures and a layering technique similar to the one employed by Baker to obtain PTAS for planar graphs

    Experimental Study of Pulse Tube Refrigerators

    Get PDF
    The working fluid for the pulse tube refrigerator is Helium, which is non-toxic to humans and harmless to the environment. The Pulse Tube Refrigeration unit offers a viable alternative to units that currently require CFC and HCFC working fluids. Pulse Tube Refrigerators can be operated over wide range of temperatures. These units can be used in numerous space and commercial applications, including food freezers freeze dryers. It can also be used to cool detectors and electronic devices. The design of Pulse Tube Refrigeration Unit was based on Orifice Pulse Tube Concept. First the gas is compressed in a compressor. Next it floes through the compressor after cooler, where heat is rejected to the water cooled loop. Then the gas enters the regenerator and cold end heat exchanger where heat is added to the gas from surroundings. The gas finally enters the Pulse Tube, orifice and reservoir. These three components produce the phase shift of mass flow and pressure, which is necessary for cooling. The gas shuttles forth between hot and cold ends. Heat is lifted against the temperature gradient and rejected at hot end heat exchanger, which is water cooled
    corecore