4 research outputs found

    Nature of carrier injection in metal/2D semiconductor interface and its implications to the limits of contact resistance

    Full text link
    Monolayers of transition metal dichalcogenides (TMDCs) exhibit excellent electronic and optical properties. However, the performance of these two-dimensional (2D) devices are often limited by the large resistance offered by the metal contact interface. Till date, the carrier injection mechanism from metal to 2D TMDC layers remains unclear, with widely varying reports of Schottky barrier height (SBH) and contact resistance (Rc), particularly in the monolayer limit. In this work, we use a combination of theory and experiments in Au and Ni contacted monolayer MoS2 device to conclude the following points: (i) the carriers are injected at the source contact through a cascade of two potential barriers - the barrier heights being determined by the degree of interaction between the metal and the TMDC layer; (ii) the conventional Richardson equation becomes invalid due to the multi-dimensional nature of the injection barriers, and using Bardeen-Tersoff theory, we derive the appropriate form of the Richardson equation that describes such composite barrier; (iii) we propose a novel transfer length method (TLM) based SBH extraction methodology, to reliably extract SBH by eliminating any confounding effect of temperature dependent channel resistance variation; (iv) we derive the Landauer limit of the contact resistance achievable in such devices. A comparison of the limits with the experimentally achieved contact resistance reveals plenty of room for technological improvements.Comment: Accepted in Physical Review

    Microelectromechanical torsional varactors with low parasitic capacitances and high dynamic range

    No full text
    This work focuses on the design of torsional microelectromechanical systems (MEMS) varactors to achieve highdynamic range of capacitances. MEMS varactors fabricated through the polyMUMPS process are characterized at low and high frequencies for their capacitance-voltage characteristics and electrical parasitics. The effect of parasitic capacitances on tuning ratio is studied and an equivalent circuit is developed. Two variants of torsional varactors that help to improve the dynamic range of torsional varactors despite the parasitics are proposed and characterized. A tuning ratio of 1:8, which is the highest reported in literature, has been obtained. We also demonstrate through simulations that much higher tuning ratios can be obtained with the designs proposed. The designs and experimental results presented are relevant to CMOS fabrication processes that use low resistivity substrate. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). DOI: 10.1117/1.JMM.11.1.013006
    corecore