45 research outputs found

    Development of a Bidirectional Dc/Dc Converter with Dual-Battery Energy Storage for Hybrid Electric Vehicle System

    Get PDF
    Hybrid electric vehicles (HEVs) offer many benefits, such as high fuel efficiency, reduced emissions, and noisy service. Two or three frequency buses are available in HEVs for various operating purposes. There are requirements of an electrochemical ally independent continuously variable DC-DC converter to connect separate DC voltage bus and pass energy back backward and forwards. In this report a battery connected induction motor drive is proposed with charging and discharging capabilities converter in motoring mode and ergative breaking mode. Three bidirectional switches are used to charge and discharge the batteries connected in the topology. The topology consists of two batteries with different voltage levels, one at 96V and other at 48V which discharge or charge with respect to the reference value given in the controller. The controller is a PI gain controller which calculates the duty ratio for the switches connected in the converter. A PWM pulse is generated at very high frequency for the switches at diffent modes run using MATLAB Simulink software. The output voltage from the converter is used to run an induction motor and charteristics of the machine are observed by graphs generated with respect to time. All of the critical specifications for DC-DC converters for electric and hybrid vehicles are high performance, small size, lightweight and durability

    Multi-objective optimization approach for cost management during product design at the conceptual phase

    Get PDF
    The effective cost management during the conceptual design phase of a product is essential to develop a product with minimum cost and desired quality. The integration of the methodologies of quality function deployment (QFD), value engineering (VE) and target costing (TC) could be applied to the continuous improvement of any product during product development. To optimize customer satisfaction and total cost of a product, a mathematical model is established in this paper. This model integrates QFD, VE and TC under multi-objective optimization frame work. A case study on domestic refrigerator is presented to show the performance of the proposed model. Goal programming is adopted to attain the goals of maximum customer satisfaction and minimum cost of the product

    THE EFFECT OF BIODIESEL AND BIOETHANOL BLENDED DIESEL FUEL ON THE PERFORMANCE AND EMISSION CHARACTERISTICS OF A DIRECT INJECTION DIESEL ENGINE

    Get PDF
    History has seen fuel innovations being driven majorly by transportation needs rather than the overall need to revolutionize the energy needs of the society. Biofuels such as biodiesel and bioethanol are now receiving the impetus required for becoming a fuel source for the future. One of the ways to reduce the dependence on fossil diesel is the blending of bioethanol with conventional diesel. However, an emulsifier or a co-solvent is required to stabilize the blend. The ricebran oil biodiesel offers an alternative application as an emulsifier for diesel-ethanol blends to form diesel-biodiesel-ethanol blends. In the present study the rice bran oil biodiesel was used in different ways such as pure biodiesel, blending with diesel and diesel- ethanol blends. The performance and emission characteristics of a direct injection (DI) diesel engine when fuelled with conventional diesel fuel, pure biodiesel, a blend of diesel and biodiesel and three blends of diesel-biodiesel-ethanol were studied over the entire range of load on the engine. The experimental results showed that the highest brake thermal efficiency was observed with 30% ethanol in diesel-biodiesel-ethanol blends. The exhaust gas temperature and sound reduced with the increase of ethanol percentage in diesel-biodiesel-ethanol blends. The Carbon monoxide, smoke, exhaust gas temperature and sound reduced with the increase of ethanol percentage in diesel-biodiesel-ethanol blends. The minimum values of Carbon monoxides, smoke, exhaust gas temperature and sound intensity were observed with the blend BE30 and were respectively 41.23%, 14.5%, 0.57% and 11.53% lower than that of the diesel fuel. The Oxides of nitrogen and carbon dioxide emissions increased with the increased percentage of ethanol in diesel-biodiesel-ethanol blends. The hydrocarbon emissions increased with ethanol but lower than that of the diesel fuel by a maximum of 35.35% with 10% ethanol in diesel-biodiesel-ethanol blend. The blending of 20% biodiesel into diesel-ethanol blends allowed higher percentage (30%) of ethanol mixing with diesel, increased the brake thermal efficiency and reduced the carbon monoxide, sound, hydrocarbons and smoke than that of the diesel fuel. So the rice bran oil biodiesel can be used as an emulsifier to mix higher percentage of ethanol with fossil diesel to improve the performance and reduce the emissions of a diesel engine

    INSIGHT OF METHANOLIC EXTRACT OF VENTILAGO MADERASPATANA LEAVES ON HEPATOPROTECTIVE ACTIVITY UNDER STREPTOZOTOCIN-INDUCED DIABETIC RATS

    Get PDF
    Objective: The methanolic leaf extract of Ventilago maderaspatana (MEVML, 200 mg/kg body weight [b.w.]) was investigate to hepatoprotective activity under streptozotocin-induced (45 mg/kg b.w.) diabetic (Di) rats. Methods: In the present study, we determined the blood glucose levels, b.w., insulin, creatinine, and bilirubin levels in normal, Di, Di treated with MEVML and positive control rats. Results: The Di rats shown adverse changes in blood glucose levels, b.w., insulin, creatinine, and bilirubin levels when compared to other group rats. Reverse the adverse changes in the above parameters when treated the Di rats with MEVML Conclusion: The MEVML shown anti-diabetic activity and reverse the adverse changes in the above parameters in liver so that the MEVML supported the traditional claim of the hepatoprotective activity under Di condition

    Ocimum sanctum: a review on the pharmacological properties

    Get PDF
    Herbal medicine, the backbone of traditional medicine in many countries have played an important role in curing the diseases of humans since ancient time. Medicinal plants are great source of bioactive compounds and chemical structures that have potential beneficial effects. The present review compiles information on ethnopharmacologically useful information and pharmacological properties of Ocimum sanctum. Ocimum sanctum (OS) has many medicinal properties like antioxidant, antidiabetic, antiulcer, anticancer, antibacterial, antifungal and other. The phytochemicals compounds of Ocimum, alkaloids, flavonoids, phenolics, essential oils, tannins and saponins play an important role in herbal medicine. Bioactive compounds of Ocimum responsible for its various medicinal properties and their effects at the molecular level need to be investigated in more detail. Furthermore, pharmacological properties of bioactive compounds in Ocimum sanctum are required to confirm the ethnomedicinal claims of Ocimum sanctum for pharmaceutical therapeutic applications

    INTERNATIONAL JOURNAL OF PHARMACY & LIFE SCIENCES Screening of potential efficacy of dietary ginger on ethanol induced oxidative stress in rat cardiac tissue: A study on changes in basic metabolic profiles

    Get PDF
    Abstract The present study was premeditated to examine the possible mechanisms where by ginger (Zingiber officinale) could protect cardiac tissue from alcohol toxicity in rats. The carbohydrate metabolic profiles like total carbohydrates, pyruvate, total proteins, free amino acids and lactate levels were measured in heart tissue. The total carbohydrates, pyruvate, and total proteins were significant declined while free amino acids, lactate levels were significant increased in alcohol intoxicated rats. Whereas with ginger (200 mg/kg body weight) treatment shown significant increase in the total carbohydrates, total proteins and pyruvate levels, whereas free amino acids, lactate levels were significant drop in the cardiac tissues. From the present study, we conclude that ginger protects the heart tissue from alcohol toxicity in rats, this may be due to the presence of many bioactive compounds in ginger

    Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films

    Get PDF
    This work reports the preparation and characterization of silver nanoparticles synthesized through wet chemical solution method and of silver films deposited by dip-coating method. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and energy dispersive spectroscopy (EDX) have been used to characterize the prepared silver nanoparticles and thin film. The morphology and crystal structure of silver nanoparticles have been determined by FESEM, HRTEM, and FETEM. The average grain size of silver nanoparticles is found to be 17.5 nm. The peaks in XRD pattern are in good agreement with that of face-centered-cubic form of metallic silver. TGA/DTA results confirmed the weight loss and the exothermic reaction due to desorption of chemisorbed water. The temperature dependence of resistivity of silver thin film, determined in the temperature range of 100-300 K, exhibit semiconducting behavior of the sample. The sample shows the activated variable range hopping in the localized states near the Fermi level
    corecore