7 research outputs found

    Topology, typology, and dynamics of commons-based peer production : on platforms, actors, and innovation in the maker movement

    Get PDF
    In this paper, we aim to present a comprehensive analysis on the emerging phenomenon of distributed innovation in commons-based peer production (CBPP) platforms. Starting with the exploration of the widely held belief on value-creation confined to industrial settings, we raise several questions regarding the feasibility of, and a need for, an inclusive innovation process that can tap grassroots capacity into both traditional (industrial research and development) and emerging (peer-to-peer) innovation models to yield sustainable solutions. In particular, we explore the emergence and structuration of digital innovations in the maker movement, as it presents an alternative construct of innovation wherein access to and sharing of knowledge is predominantly distributed. With innovation outcomes often freely revealed, its very structuration could pose a principal challenge to our conceptualizations of value creation and competitive advantage in the current economic model. Drawing from responses received from 200 collaborative innovation platforms, six semi‐structured interviews focusing on socio-technical innovation cases, as well as four in-depth narrative interviews with maker turned entrepreneurs, we present a detailed analysis on the topology of network, typology of actors, as well as the underlying innovation ecosystem in CBPP networks in Germany. In doing so, we contribute to the conceptualization of peer-to-peer distributed innovations in collaborative platforms

    A Comparative Life Cycle Assessment of Meat Trays Made of Various Packaging Materials

    No full text
    In light of the debate on the circular economy, the EU strategy for plastics, and several national regulations, such as the German Packaging Act, polymeric foam materials as well as hybrid packaging (multilayered plastic) are now in focus. To understand the environmental impacts of various tray solutions for meat packaging, a comparative environmental assessment was conducted. As an environmental assessment method, a life cycle assessment (LCA) was applied following the ISO standards 14040/44. The nine packaging solutions investigated were: PS-based trays (extruded polystyrene and extruded polystyrene with five-layered structure containing ethylene vinyl alcohol), PET-based trays (recycled polyethylene terephthalate, with and without polyethylene layer, and amorphous polyethylene terephthalate), polypropylene (PP) and polylactic acid (PLA). The scope of the LCA study included the production of the tray and the end-of-life stage. The production of meat, the filling of the tray with meat and the tray sealing were not taken into account. The results show that the PS-based trays, especially the mono material solutions made of extruded polystyrene (XPS), show the lowest environmental impact across all 12 impact categories except for resource depletion. Multilayer products exhibit higher environmental impacts. The LCA also shows that the end-of-life stage has an important influence on the environmental performance of trays. However, the production of the trays dominates the overall results. Furthermore, the sensitivity analysis illustrates that, even if higher recycling rates were realised in the future, XPS based solutions would still outperform the rest from an environmental perspective

    Experimental study on fluorine release from photovoltaic backsheet materials containing PVF and PVDF during pyrolysis and incineration in a technical lab-scale reactor at various temperatures

    No full text
    With a sharp increase in photovoltaic (PV) installations across the world, PV waste is now a relatively new addition to the e-waste category. From 45,000 tonnes in 2016, the PV waste stream is rapidly increasing and is projected to reach 60 million tonnes by 2050. Backsheets are composite structures made from several material layers of polymer, adhesive, and primer. Widely used PV backsheets can be classified into three core types: (a) KPK (Kynar®/polyethylene terephthalate (PET)/Kynar®), (b) TPT (Tedlar®/PET/Tedlar®), and (c) PPE (PET/PET/ethylvinylacetate). Kynar® and Tedlar® are based on polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF), respectively. PPE backsheets are fluorine-free composites made primarily from PET. With increasing focus on the end-of-life (EoL) handling of PV waste, the handling of fluoropolymers, which is largely unexplored, requires closer examination to avoid environmental damage. The aim of this study was to obtain information on the fluorine released from PV backsheet materials into the gas phase during combustion and pyrolysis as EoL pathways. Therefore, several experimental trials were conducted to measure fluorine transfer into the gas phase at 300 °C, 400 °C, 500 °C, and 900 °C (for pyrolysis) and at 750 °C, 850 °C, and 950 °C (for incineration)

    Environmental Assessment of Various End-of-Life Pathways for Treating Per- and Polyfluoroalkyl Substances in Spent Fire-Extinguishing Waters

    No full text
    Per- and polyfluoroalkyl substances (PFAS) are now thought to be far more prevalent in water bodies across the globe than previously reported. In particular, military bases, airports, and industrial sites are prone to contamination caused by runoff discharges from fire-extinguishing waters that contain PFAS such as aqueous film-forming foams (AFFF). These substances and their metabolites show a high degree of mobility as well as a low biotic and abiotic degradability; as a result, they are bioaccumulative and often migrate among the environmental compartments in addition to being toxic. As of now, there is no suitable end-of-life treatment process that is both technologically efficient and cost-effective for the handling of PFAS. Currently, the incineration of the collected extinguishing water at temperatures above 1100 °C is the recommended method for the disposal of PFAS to degrade material compounds. However, this method consumes extensive energy because it requires incineration of large quantities of water to treat a diluted fraction of PFAS. Aside from incineration, adsorption of PFAS on granulated activated carbon is one of the most widely used technologies, albeit with poor adsorption and often requiring very large downstream filtration systems. Finally, the application of functional precipitation agents using commercially available cationic surfactants is a novel approach (PerfluorAd® [Cornelsen] process) that enables the effective precipitation of PFAS from the spent fire-extinguishing waters. Hence, the goal of the present study was to investigate the environmental impacts emanating from the proper treatment of spent fire-extinguishing water with the aforementioned 3 end-of-life treatment scenarios. A life cycle assessment was conducted for this purpose. The results show that the PerfluorAd process outperforms the other 2 treatment technologies across all environmental impact categories except for ozone depletion. Environ Toxicol Chem 2020;00:1–11. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC
    corecore